A parallel evolutionary multiple-try metropolis Markov chain Monte Carlo algorithm for sampling spatial partitions

被引:4
作者
Cho, Wendy K. Tam [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Liu, Yan Y. [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Univ Illinois, Dept Polit Sci, Coll Law, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Stat, Coll Law, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Math, Coll Law, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Comp Sci, Coll Law, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Asian Amer Studies, Coll Law, Urbana, IL 61801 USA
[6] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
[7] Oak Ridge Natl Lab, Computat Urban Sci Grp, Computat Sci & Engn Div, Oak Ridge, TN 37830 USA
基金
美国国家科学基金会;
关键词
Markov chain Monte Carlo; Evolutionary algorithms; Spatial partitioning; SCATTER SEARCH; OPTIMIZATION;
D O I
10.1007/s11222-020-09977-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We develop an Evolutionary Markov Chain Monte Carlo (EMCMC) algorithm for sampling spatial partitions that lie within a large, complex, and constrained spatial state space. Our algorithm combines the advantages of evolutionary algorithms (EAs) as optimization heuristics for state space traversal and the theoretical convergence properties of Markov Chain Monte Carlo algorithms for sampling from unknown distributions. Local optimality information that is identified via a directed search by our optimization heuristic is used to adaptively update a Markov chain in a promising direction within the framework of a Multiple-Try Metropolis Markov Chain model that incorporates a generalized Metropolis-Hastings ratio. We further expand the reach of our EMCMC algorithm by harnessing the computational power afforded by massively parallel computing architecture through the integration of a parallel EA framework that guides Markov chains running in parallel.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Parallel Markov chain Monte Carlo for non-Gaussian posterior distributions
    Miroshnikov, Alexey
    Wei, Zheng
    Conlon, Erin Marie
    STAT, 2015, 4 (01): : 304 - 319
  • [42] A new algorithm for setting initial values for Markov Chain Monte Carlo in genetic linkage analysis via Gibbs sampling
    Jandaghi, Gholamreza
    SCIENTIFIC RESEARCH AND ESSAYS, 2010, 5 (22): : 3447 - 3454
  • [43] (MC)3-A Multi-Channel Markov Chain Monte Carlo algorithm for phase-space sampling
    Kroeninger, Kevin
    Schumann, Steffen
    Willenberg, Benjamin
    COMPUTER PHYSICS COMMUNICATIONS, 2015, 186 : 1 - 10
  • [44] Enhancing hydrologic data assimilation by evolutionary Particle Filter and Markov Chain Monte Carlo
    Abbaszadeh, Peyman
    Moradkhani, Hamid
    Yan, Hongxiang
    ADVANCES IN WATER RESOURCES, 2018, 111 : 192 - 204
  • [45] Markov Chain Monte Carlo versus Importance Sampling in Bayesian Inference of the GARCH model
    Takaishi, Tetsuya
    17TH INTERNATIONAL CONFERENCE IN KNOWLEDGE BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS - KES2013, 2013, 22 : 1056 - 1064
  • [46] Robust and Fast Markov Chain Monte Carlo Sampling of Diffusion MRI Microstructure Models
    Harms, Robbert L.
    Roebroeck, Alard
    FRONTIERS IN NEUROINFORMATICS, 2018, 12
  • [47] Markov Chain Monte Carlo Methods for Lattice Gaussian Sampling: Convergence Analysis and Enhancement
    Wang, Zheng
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (10) : 6711 - 6724
  • [48] Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo
    Vihola, Matti
    Helske, Jouni
    Franks, Jordan
    SCANDINAVIAN JOURNAL OF STATISTICS, 2020, 47 (04) : 1339 - 1376
  • [49] Reinforcement Learning-Aided Markov Chain Monte Carlo For Lattice Gaussian Sampling
    Wang, Zheng
    Xia, Yili
    Lyu, Shanxiang
    Ling, Cong
    2021 IEEE INFORMATION THEORY WORKSHOP (ITW), 2021,
  • [50] Bayesian inference of channelized section spillover via Markov Chain Monte Carlo sampling
    Qi, Hongsheng
    Hu, Xianbiao
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2018, 97 : 478 - 498