A parallel evolutionary multiple-try metropolis Markov chain Monte Carlo algorithm for sampling spatial partitions

被引:4
作者
Cho, Wendy K. Tam [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Liu, Yan Y. [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Univ Illinois, Dept Polit Sci, Coll Law, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Stat, Coll Law, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Math, Coll Law, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Comp Sci, Coll Law, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Asian Amer Studies, Coll Law, Urbana, IL 61801 USA
[6] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
[7] Oak Ridge Natl Lab, Computat Urban Sci Grp, Computat Sci & Engn Div, Oak Ridge, TN 37830 USA
基金
美国国家科学基金会;
关键词
Markov chain Monte Carlo; Evolutionary algorithms; Spatial partitioning; SCATTER SEARCH; OPTIMIZATION;
D O I
10.1007/s11222-020-09977-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We develop an Evolutionary Markov Chain Monte Carlo (EMCMC) algorithm for sampling spatial partitions that lie within a large, complex, and constrained spatial state space. Our algorithm combines the advantages of evolutionary algorithms (EAs) as optimization heuristics for state space traversal and the theoretical convergence properties of Markov Chain Monte Carlo algorithms for sampling from unknown distributions. Local optimality information that is identified via a directed search by our optimization heuristic is used to adaptively update a Markov chain in a promising direction within the framework of a Multiple-Try Metropolis Markov Chain model that incorporates a generalized Metropolis-Hastings ratio. We further expand the reach of our EMCMC algorithm by harnessing the computational power afforded by massively parallel computing architecture through the integration of a parallel EA framework that guides Markov chains running in parallel.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Sample caching Markov chain Monte Carlo approach to boson sampling simulation
    Liu, Yong
    Xiong, Min
    Wu, Chunqing
    Wang, Dongyang
    Liu, Yingwen
    Ding, Jiangfang
    Huang, Anqi
    Fu, Xiang
    Qiang, Xiaogang
    Xu, Ping
    Deng, Mingtang
    Yang, Xuejun
    Wu, Junjie
    NEW JOURNAL OF PHYSICS, 2020, 22 (03):
  • [32] Estimating the Earthquake Source Time Function by Markov Chain Monte Carlo Sampling
    Wojciech Dȩbski
    Pure and Applied Geophysics, 2008, 165 : 1263 - 1287
  • [33] Stochastic image denoising based on Markov-chain Monte Carlo sampling
    Wong, Alexander
    Mishra, Akshaya
    Zhang, Wen
    Fieguth, Paul
    Clausi, David A.
    SIGNAL PROCESSING, 2011, 91 (08) : 2112 - 2120
  • [34] Robust particle tracker via Markov Chain Monte Carlo posterior sampling
    Fasheng Wang
    Mingyu Lu
    Multimedia Tools and Applications, 2014, 72 : 573 - 589
  • [35] Learnable Markov Chain Monte Carlo Sampling Methods for Lattice Gaussian Distribution
    Wang, Zheng
    Lyu, Shanxiang
    Liu, Ling
    IEEE ACCESS, 2019, 7 : 87494 - 87503
  • [37] Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling
    Vrugt, Jasper A.
    Diks, Cees G. H.
    Clark, Martyn P.
    ENVIRONMENTAL FLUID MECHANICS, 2008, 8 (5-6) : 579 - 595
  • [38] A Markov chain Monte Carlo algorithm for Bayesian dynamic signature verification
    Muramatsu, Daigo
    Kondo, Mitsuru
    Sasaki, Masahiro
    Tachibana, Satoshi
    Matsumoto, Takashi
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2006, 1 (01) : 22 - 34
  • [39] Robust particle tracker via Markov Chain Monte Carlo posterior sampling
    Wang, Fasheng
    Lu, Mingyu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 72 (01) : 573 - 589
  • [40] Lattice Gaussian Sampling by Markov Chain Monte Carlo: Bounded Distance Decoding and Trapdoor Sampling
    Wang, Zheng
    Ling, Cong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (06) : 3630 - 3645