A parallel evolutionary multiple-try metropolis Markov chain Monte Carlo algorithm for sampling spatial partitions

被引:4
|
作者
Cho, Wendy K. Tam [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Liu, Yan Y. [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Univ Illinois, Dept Polit Sci, Coll Law, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Stat, Coll Law, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Math, Coll Law, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Comp Sci, Coll Law, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Asian Amer Studies, Coll Law, Urbana, IL 61801 USA
[6] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
[7] Oak Ridge Natl Lab, Computat Urban Sci Grp, Computat Sci & Engn Div, Oak Ridge, TN 37830 USA
基金
美国国家科学基金会;
关键词
Markov chain Monte Carlo; Evolutionary algorithms; Spatial partitioning; SCATTER SEARCH; OPTIMIZATION;
D O I
10.1007/s11222-020-09977-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We develop an Evolutionary Markov Chain Monte Carlo (EMCMC) algorithm for sampling spatial partitions that lie within a large, complex, and constrained spatial state space. Our algorithm combines the advantages of evolutionary algorithms (EAs) as optimization heuristics for state space traversal and the theoretical convergence properties of Markov Chain Monte Carlo algorithms for sampling from unknown distributions. Local optimality information that is identified via a directed search by our optimization heuristic is used to adaptively update a Markov chain in a promising direction within the framework of a Multiple-Try Metropolis Markov Chain model that incorporates a generalized Metropolis-Hastings ratio. We further expand the reach of our EMCMC algorithm by harnessing the computational power afforded by massively parallel computing architecture through the integration of a parallel EA framework that guides Markov chains running in parallel.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] The Convergence of Markov Chain Monte Carlo Methods: From the Metropolis Method to Hamiltonian Monte Carlo
    Betancourt, Michael
    ANNALEN DER PHYSIK, 2019, 531 (03)
  • [22] Markov Chain Monte Carlo sampling on multilocus genotypes
    Szydlowski, M.
    JOURNAL OF ANIMAL AND FEED SCIENCES, 2006, 15 (04): : 685 - 694
  • [23] A simple introduction to Markov Chain Monte–Carlo sampling
    Don van Ravenzwaaij
    Pete Cassey
    Scott D. Brown
    Psychonomic Bulletin & Review, 2018, 25 : 143 - 154
  • [24] PARALLEL MARKOV CHAIN MONTE CARLO FOR SENSOR SCHEDULING
    Raihan, Dilshad
    Faber, Weston
    Chakravorty, Suman
    Hussein, Islam
    ASTRODYNAMICS 2018, PTS I-IV, 2019, 167 : 2447 - 2454
  • [25] Finite Element Model Updating Using an Evolutionary Markov Chain Monte Carlo Algorithm
    Boulkaibet, I.
    Mthembu, L.
    Marwala, T.
    Friswell, M. I.
    Adhikari, S.
    DYNAMICS OF CIVIL STRUCTURES, VOL 2, 2015, : 245 - 253
  • [26] Using Markov Chain Monte Carlo Algorithm for Sampling Imbalance Binary IDS Datasets
    Abedzadeh, Najmeh
    Jacobs, Dr. Matthew
    2022 31ST INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS (ICCCN 2022), 2022,
  • [27] Parallel algorithms for Markov chain Monte Carlo methods in latent spatial Gaussian models
    Whiley, M
    Wilson, SP
    STATISTICS AND COMPUTING, 2004, 14 (03) : 171 - 179
  • [28] Parallel algorithms for Markov chain Monte Carlo methods in latent spatial Gaussian models
    Matt Whiley
    Simon P. Wilson
    Statistics and Computing, 2004, 14 : 171 - 179
  • [29] On-road visual vehicle tracking using Markov chain Monte Carlo particle filtering with metropolis sampling
    J. Arróspide
    L. Salgado
    International Journal of Automotive Technology, 2012, 13 : 955 - 961
  • [30] ON-ROAD VISUAL VEHICLE TRACKING USING MARKOV CHAIN MONTE CARLO PARTICLE FILTERING WITH METROPOLIS SAMPLING
    Arrospide, J.
    Salgado, L.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2012, 13 (06) : 955 - 961