A parallel evolutionary multiple-try metropolis Markov chain Monte Carlo algorithm for sampling spatial partitions

被引:4
|
作者
Cho, Wendy K. Tam [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Liu, Yan Y. [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Univ Illinois, Dept Polit Sci, Coll Law, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Stat, Coll Law, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Math, Coll Law, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Comp Sci, Coll Law, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Asian Amer Studies, Coll Law, Urbana, IL 61801 USA
[6] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
[7] Oak Ridge Natl Lab, Computat Urban Sci Grp, Computat Sci & Engn Div, Oak Ridge, TN 37830 USA
基金
美国国家科学基金会;
关键词
Markov chain Monte Carlo; Evolutionary algorithms; Spatial partitioning; SCATTER SEARCH; OPTIMIZATION;
D O I
10.1007/s11222-020-09977-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We develop an Evolutionary Markov Chain Monte Carlo (EMCMC) algorithm for sampling spatial partitions that lie within a large, complex, and constrained spatial state space. Our algorithm combines the advantages of evolutionary algorithms (EAs) as optimization heuristics for state space traversal and the theoretical convergence properties of Markov Chain Monte Carlo algorithms for sampling from unknown distributions. Local optimality information that is identified via a directed search by our optimization heuristic is used to adaptively update a Markov chain in a promising direction within the framework of a Multiple-Try Metropolis Markov Chain model that incorporates a generalized Metropolis-Hastings ratio. We further expand the reach of our EMCMC algorithm by harnessing the computational power afforded by massively parallel computing architecture through the integration of a parallel EA framework that guides Markov chains running in parallel.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A parallel evolutionary multiple-try metropolis Markov chain Monte Carlo algorithm for sampling spatial partitions
    Wendy K. Tam Cho
    Yan Y. Liu
    Statistics and Computing, 2021, 31
  • [2] Acceleration of the Multiple-Try Metropolis algorithm using antithetic and stratified sampling
    Radu V. Craiu
    Christiane Lemieux
    Statistics and Computing, 2007, 17
  • [3] An adaptive multiple-try Metropolis algorithm
    Fontaine, Simon
    Bedard, Mylene
    BERNOULLI, 2022, 28 (03) : 1986 - 2011
  • [4] Acceleration of the Multiple-Try Metropolis algorithm using antithetic and stratified sampling
    Craiu, Radu V.
    Lemieux, Christiane
    STATISTICS AND COMPUTING, 2007, 17 (02) : 109 - 120
  • [5] The multiple-try method and local optimization in metropolis sampling
    Liu, JS
    Liang, FM
    Wong, WH
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (449) : 121 - 134
  • [6] A multiple-try Metropolis–Hastings algorithm with tailored proposals
    Xin Luo
    Håkon Tjelmeland
    Computational Statistics, 2019, 34 : 1109 - 1133
  • [7] Adaptive Component-Wise Multiple-Try Metropolis Sampling
    Yang, Jinyoung
    Levi, Evgeny
    Craiu, Radu, V
    Rosenthal, Jeffrey S.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (02) : 276 - 289
  • [8] A multiple-try Metropolis-Hastings algorithm with tailored proposals
    Luo, Xin
    Tjelmeland, Hakon
    COMPUTATIONAL STATISTICS, 2019, 34 (03) : 1109 - 1133
  • [9] Parallel and interacting Markov chain Monte Carlo algorithm
    Campillo, Fabien
    Rakotozafy, Rivo
    Rossi, Vivien
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (12) : 3424 - 3433
  • [10] A Markov Chain Monte Carlo Algorithm for Spatial Segmentation
    Raveendran, Nishanthi
    Sofronov, Georgy
    INFORMATION, 2021, 12 (02) : 1 - 14