Advanced Driver Assistance System for the drowsiness detection using facial landmarks

被引:3
作者
Sinche Cueva, Luis Dario [1 ]
Cordero, Jorge [1 ]
机构
[1] Univ Tecn Particular Loja, Dept Ciencias Comp, Loja, Ecuador
来源
2020 15TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI'2020) | 2020年
关键词
Facial landmark; Computer vision; Drowsiness Detection;
D O I
10.23919/cisti49556.2020.9140893
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the development of a solution to detect a driver's drowsiness in real time and issue alerts to avoid possible traffic accidents. In particular, an analysis of the methods used for the detection of drowsiness by computer vision is performed, focusing on the use of facial reference points. Distraction, drowsiness, tiredness, speeding and fatigue are the main causes of accidents and, precisely, advanced driver assistance systems ADAS help reduce these serious human errors.
引用
收藏
页数:4
相关论文
共 22 条
[1]  
Agencia Nacional de Transito, 2015, DESC ACC 2015 AG NAC
[2]  
[Anonymous], OpenCV Cascade Classifier
[3]   Object detection application and Viola Jones algorithm for the development of a database in Alzheimer's patients [J].
Castillo Salazar, David Ricardo ;
Guevara Maldonado, Cesar Byron ;
Gomez Alvarado, Hector Fernando ;
Lanzarini, Laura .
2019 14TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2019,
[4]  
Fridman L., 2017, MIT AUTONOMOUS VEHIC, V6, P1
[5]  
Goncalves J.A., 2017, 2017 1st Cyber Security in Networking Conference (CSNet), P1
[6]  
Grace R., 2017, DROWSY DRIVER MONITO, P64, DOI [10.17077/drivingassessment.1010, DOI 10.17077/DRIVINGASSESSMENT.1010]
[7]  
오미연, 2016, [JOURNAL OF KOREA MULTIMEDIA SOCIETY, 멀티미디어학회논문지], V19, P1852, DOI 10.9717/kmms.2016.19.11.1852
[8]  
INEC, 2019, EST TRANSP
[9]  
Jain L. C., 2015, ADV INTELLIGENT SYST, V308, P737, DOI [10.1007/978-81-322-2012-1, DOI 10.1007/978-81-322-2012-1]
[10]  
Kahlon M, 2018, INT CONF ELECTRO INF, P209, DOI 10.1109/EIT.2018.8500272