Training of neural networks for classification of imbalanced remote-sensing data

被引:0
|
作者
Serpico, SB
Bruzzone, L
机构
来源
IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT | 1997年
关键词
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The multilayer perceptron is currently one of the most widely used neural models for the classification of remote-sensing images. Unfortunately, training of multilayer perceptron using data with very different a-priori class probabilities (imbalanced data) is very slow. This paper describes a three-phase learning technique aimed at speeding up the training of multilayer perceptrons when applied to imbalanced data. The results, obtained on remote-sensing data acquired with a passive multispectral scanner, confirm the validity of the proposed technique.
引用
收藏
页码:1202 / 1204
页数:3
相关论文
共 50 条
  • [41] Evolving Neural Networks with Maximum AUC for Imbalanced Data Classification
    Lu, Xiaofen
    Tang, Ke
    Yao, Xin
    HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, PT 1, 2010, 6076 : 335 - 342
  • [42] Recurrent neural networks for remote sensing image classification
    Lakhal, Mohamed Ilyes
    Cevikalp, Hakan
    Escalera, Sergio
    Ofli, Ferda
    IET COMPUTER VISION, 2018, 12 (07) : 1040 - 1045
  • [43] Neural Networks Learn Specified Information for Imbalanced Data Classification
    Huang, Zhan Ao
    Sang, Yongsheng
    Sun, Yanan
    Lv, Jiancheng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6719 - 6730
  • [44] FUZZY DECISION-MAKING IN THE CLASSIFICATION OF MULTISOURCE REMOTE-SENSING DATA
    BINAGHI, E
    RAMPINI, A
    OPTICAL ENGINEERING, 1993, 32 (06) : 1193 - 1204
  • [45] INTEGRATING TOPOGRAPHIC DATA WITH REMOTE-SENSING FOR LAND-COVER CLASSIFICATION
    JANSSEN, LLF
    JAARSMA, MN
    VANDERLINDEN, ETM
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 1990, 56 (11) : 1503 - 1506
  • [46] Combining clustering and classification for remote-sensing images using unlabeled data
    边小勇
    张天序
    张晓龙
    Chinese Optics Letters, 2011, 9 (01) : 41 - 44
  • [47] TAU-COEFFICIENTS FOR ACCURACY ASSESSMENT OF CLASSIFICATION OF REMOTE-SENSING DATA
    MA, ZK
    REDMOND, RL
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 1995, 61 (04) : 435 - 439
  • [48] CONTEXTUAL CLASSIFICATION OF MULTISPECTRAL REMOTE-SENSING DATA USING A MULTIPROCESSOR SYSTEM
    SWAIN, PH
    SIEGEL, HJ
    SMITH, BW
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1980, 18 (02): : 197 - 203
  • [49] A comparison of feature reduction techniques for classification of hyperspectral remote-sensing data
    Serpico, SB
    D'Incà, M
    Melgani, F
    Moser, G
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VIII, 2003, 4885 : 347 - 358
  • [50] EVIDENTIAL REASONING APPROACH TO MULTISOURCE-DATA CLASSIFICATION IN REMOTE-SENSING
    KIM, H
    SWAIN, PH
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1995, 25 (08): : 1257 - 1265