AN UNSUPERVISED SEGMENTATION METHOD FOR REMOTE SENSING IMAGERY BASED ON CONDITIONAL RANDOM FIELDS

被引:0
作者
Soares, A. R. [1 ]
Korting, T. S. [1 ]
Fonseca, L. M. G. [1 ]
Neves, A. K. [1 ]
机构
[1] Brazils Natl Inst Space Res INPE, Coordinat Earth Observat OBT, Av Astronautas 1758, Sao Jose Dos Campos, SP, Brazil
来源
2020 IEEE LATIN AMERICAN GRSS & ISPRS REMOTE SENSING CONFERENCE (LAGIRS) | 2020年
基金
巴西圣保罗研究基金会;
关键词
Image segmentation; Remote Sensing; Conditional Random Fields; GEOBIA; CLASSIFICATION; MODEL;
D O I
10.1109/lagirs48042.2020.9165623
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Segmentation is a fundamental problem in imageprocessing and a common operation in Remote Sensing, which has been widely used especially in Geographic Object-Based mage Analysis (GEOBIA). In this paper, we propose a new unsupervised segmentation algorithm based on the Conditional Random Fields (CRF) theory, The method relies on two levels of information: (1) that comes from an unsupervised classification with Fuzzy C-Means algorithm; (2) the 8-connected neighbourhood of a pixel. The algorithm was tested on a WorldView-2 multispectral image, with 2m of spatial resolution, Results were evaluated using 6 quality measures, and their performance was compared with other image segmentation algorithms that are usually applied by the Remote Sensing community. Results indicate that the proposed algorithm achieved superior overall performance when compared others, despite some over-segmentation.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 23 条
[1]  
[Anonymous], 2018, IEEE T GEOSCIENCE RE
[2]  
[Anonymous], 1996, ANAIS 8 S BRASILEIRO, DOI [10.1016/b978-008042848-2/50002-6, DOI 10.1016/B978-008042848-2/50002-6]
[3]  
Baatz M., 2000, Angewandte Geographische Informations-Verarbeitung XII, P12
[4]  
Borhani M., 2014, IRANIAN C INTELLIGEN, P1, DOI DOI 10.1109/IRANIANCIS.2014.6802573
[5]   Effectiveness of a physical activity program on weight, physical fitness, occupational stress, job satisfaction and quality of life of overweight employees in high-tech industries: a randomized controlled study [J].
Fang, Yun-Ya ;
Huang, Chien-Yuan ;
Hsu, Mei-Chi .
INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS, 2019, 25 (04) :621-629
[6]   Efficient graph-based image segmentation [J].
Felzenszwalb, PF ;
Huttenlocher, DP .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (02) :167-181
[7]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[8]  
GURNEY CM, 1983, PHOTOGRAMM ENG REM S, V49, P55
[9]   Image Segmentation Parameter Optimization Considering Within- and Between-Segment Heterogeneity at Multiple Scale Levels: Test Case for Mapping Residential Areas Using Landsat Imagery [J].
Johnson, Brian A. ;
Bragais, Milben ;
Endo, Isao ;
Magcale-Macandog, Damasa B. ;
Macandog, Paula Beatrice M. .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2015, 4 (04) :2292-2305
[10]  
Kittler J., 1984, Image and Vision Computing, V2, P13, DOI 10.1016/0262-8856(84)90040-4