Telegraphic Transport Processes and Their Fractional Generalization: A Review and Some Extensions

被引:18
作者
Masoliver, Jaume [1 ,2 ]
机构
[1] Univ Barcelona, Dept Condensed Matter Phys, Barcelona 08007, Catalonia, Spain
[2] Univ Barcelona, Complex Syst Inst UBICS, Barcelona 08007, Catalonia, Spain
关键词
telegrapher’ s equations; fractional telegrapher’ s equation; continuous time random walk; transport problems; 1ST PASSAGE TIMES; PERSISTENT RANDOM-WALK; ANOMALOUS DIFFUSION; RANDOM MOTION; EQUATIONS; DIMENSIONS; FLIGHTS; LIGHT; LIMIT;
D O I
10.3390/e23030364
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We address the problem of telegraphic transport in several dimensions. We review the derivation of two and three dimensional telegrapher's equations-as well as their fractional generalizations-from microscopic random walk models for transport (normal and anomalous). We also present new results on solutions of the higher dimensional fractional equations.
引用
收藏
页数:32
相关论文
共 78 条
[1]  
[Anonymous], 1994, Aspects and Applications of the Random Walk
[2]   V-Langevin equations, continuous time random walks and fractional diffusion [J].
Balescu, R. .
CHAOS SOLITONS & FRACTALS, 2007, 34 (01) :62-80
[3]  
Balescu R, 2005, SER PLASMA PHYS
[4]  
Ben-Avraham D., 2000, DIFFUSION REACTIONS
[5]   Generalization of the persistent random walk to dimensions greater than 1 [J].
Boguñá, M ;
Porrà, JM ;
Masoliver, J .
PHYSICAL REVIEW E, 1998, 58 (06) :6992-6998
[6]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[7]   RESPONSE OF A 2-LEVEL SYSTEM TO A RANDOM MODULATION OF THE RESONANCE WITH AN ARBITRARY STRONG EXTERNAL-FIELD [J].
BURSHTEIN, AI ;
ZHARIKOV, AA ;
TEMKIN, SI .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1988, 21 (10) :1907-1931
[8]   On strong anomalous diffusion [J].
Castiglione, P ;
Mazzino, A ;
Muratore-Ginanneschi, P ;
Vulpiani, A .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 134 (01) :75-93
[9]   RANDOM-WALK WITH PERSISTENCE [J].
CLAES, I ;
VANDENBROECK, C .
JOURNAL OF STATISTICAL PHYSICS, 1987, 49 (1-2) :383-392
[10]   Time-Changed Processes Governed by Space-Time Fractional Telegraph Equations [J].
D'ovidio, Mirko ;
Orsingher, Enzo ;
Toaldo, Bruno .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2014, 32 (06) :1009-1045