Smartwatch inertial sensors continuously monitor real-world motor fluctuations in Parkinson's disease

被引:133
作者
Powers, Rob [1 ]
Etezadi-Amoli, Maryam [1 ]
Arnold, Edith M. [1 ]
Kianian, Sara [1 ,2 ]
Mance, Irida [1 ]
Gibiansky, Maxsim [1 ]
Trietsch, Dan [1 ]
Alvarado, Alexander Singh [1 ]
Kretlow, James D. [1 ]
Herrington, Todd M. [3 ,4 ]
Brillman, Salima [5 ]
Huang, Nengchun [6 ]
Lin, Peter T. [6 ]
Pham, Hung A. [1 ]
Ullal, Adeeti, V [1 ]
机构
[1] Apple Inc, Cupertino, CA 95014 USA
[2] SUNY Stony Brook, Renaissance Sch Med, Stony Brook, NY 11794 USA
[3] Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02114 USA
[4] Harvard Med Sch, Dept Neurol, Boston, MA 02115 USA
[5] Parkinsons Dis & Movement Ctr Silicon Valley, Menlo Pk, CA 94025 USA
[6] Silicon Valley Parkinsons Ctr, Los Gatos, CA 95032 USA
关键词
MOVEMENT-DISORDER SOCIETY; QUALITY-OF-LIFE; RATING-SCALE; LEVODOPA; TREMOR; SYMPTOMS; HEALTH; DYSKINESIAS; RELIABILITY; DISPARITIES;
D O I
10.1126/scitranslmed.abd7865
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Longitudinal, remote monitoring of motor symptoms in Parkinson's disease (PD) could enable more precise treatment decisions. We developed the Motor fluctuations Monitor for Parkinson's Disease (MM4PD), an ambulatory monitoring system that used smartwatch inertial sensors to continuously track fluctuations in resting tremor and dyskinesia. We designed and validated MM4PD in 343 participants with PD, including a longitudinal study of up to 6 months in a 225-subject cohort. MM4PD measurements correlated to clinical evaluations of tremor severity (p = 0.80) and mapped to expert ratings of dyskinesia presence (P < 0.001) during in-clinic tasks. MM4PD captured symptom changes in response to treatment that matched the clinician's expectations in 94% of evaluated subjects. In the remaining 6% of cases, symptom data from MM4PD identified opportunities to make improvements in pharmacologic strategy. These results demonstrate the promise of MM4PD as a tool to support patient-clinician communication, medication titration, and clinical trial design.
引用
收藏
页数:11
相关论文
共 86 条
[41]   A home diary to assess functional status in patients with Parkinson's disease with motor fluctuations and dyskinesia [J].
Hauser, RA ;
Friedlander, J ;
Zesiewicz, TA ;
Adler, CH ;
Seeberger, LC ;
O'Brien, CF ;
Molho, ES ;
Factor, SA .
CLINICAL NEUROPHARMACOLOGY, 2000, 23 (02) :75-81
[42]   Racial and Socioeconomic Disparities in Parkinsonism [J].
Hemming, J. Patrick ;
Gruber-Baldini, Ann L. ;
Anderson, Karen E. ;
Fishman, Paul S. ;
Reich, Stephen G. ;
Weiner, William J. ;
Shulman, Lisa M. .
ARCHIVES OF NEUROLOGY, 2011, 68 (04) :498-503
[43]   Using Cloud-Based Physical Activity Data from Google Fit and Apple Healthkit to Expand Recording of Physical Activity Data in a Population Study [J].
Henriksen, Andre ;
Hopstock, Laila Arnesdatter ;
Hartvigsen, Gunnar ;
Grimsgaard, Sameline .
MEDINFO 2017: PRECISION HEALTHCARE THROUGH INFORMATICS, 2017, 245 :108-112
[44]   Wearable Sensors for Estimation of Parkinsonian Tremor Severity during Free Body Movements [J].
Hssayeni, Murtadha D. ;
Jimenez-Shahed, Joohi ;
Burack, Michelle A. ;
Ghoraani, Behnaz .
SENSORS, 2019, 19 (19)
[45]   Effect of using a wearable device on clinical decision-making and motor symptoms in patients with Parkinson's disease starting transdermal rotigotine patch: A pilot study [J].
Isaacson, Stuart H. ;
Boroojerdi, Babak ;
Waln, Olga ;
McGraw, Martha ;
Kreitzman, David L. ;
Klos, Kevin ;
Revilla, Fredy J. ;
Heldman, Dustin ;
Phillips, Maureen ;
Terricabras, Dolors ;
Markowitz, Michael ;
Woltering, Franz ;
Carson, Stan ;
Truong, Daniel .
PARKINSONISM & RELATED DISORDERS, 2019, 64 :132-137
[46]   High-accuracy automatic classification of Parkinsonian tremor severity using machine learning method [J].
Jeon, Hyoseon ;
Lee, Woongwoo ;
Park, Hyeyoung ;
Lee, Hong Ji ;
Kim, Sang Kyong ;
Kim, Han Byul ;
Jeon, Beomseok ;
Park, Kwang Suk .
PHYSIOLOGICAL MEASUREMENT, 2017, 38 (11) :1980-1999
[47]   Local colonization-extinction dynamics of a tree-killing bark beetle during a large-scale outbreak [J].
Karvemo, S. ;
Johansson, V. ;
Schroeder, M. ;
Ranius, T. .
ECOSPHERE, 2016, 7 (03)
[48]   The Use of Data from the Parkinson's KinetiGraph to Identify Potential Candidates for Device Assisted Therapies [J].
Khodakarami, Hamid ;
Farzanehfar, Parisa ;
Horne, Malcolm .
SENSORS, 2019, 19 (10)
[49]   The Pharmacokinetics and Pharmacodynamics of Levodopa in the Treatment of Parkinson's Disease [J].
Khor, Soo-Peang ;
Hsu, Ann .
CURRENT CLINICAL PHARMACOLOGY, 2007, 2 (03) :234-243
[50]   Using a smartphone-based self-management platform to support medication adherence and clinical consultation in Parkinson's disease [J].
Lakshminarayana, Rashmi ;
Wang, Duolao ;
Burn, David ;
Chaudhuri, K. Ray ;
Galtrey, Clare ;
Guzman, Natalie Valle ;
Hellman, Bruce ;
James, Ben ;
Pal, Suvankar ;
Stamford, Jon ;
Steiger, Malcolm ;
Stott, R. W. ;
Teo, James ;
Barker, Roger A. ;
Wang, Emma ;
Bloem, Bastiaan R. ;
van der Eijk, Martijn ;
Rochester, Lynn ;
Williams, Adrian .
NPJ PARKINSONS DISEASE, 2017, 3