Fuzzy logic programming via multilattices

被引:34
作者
Medina, Jesus [1 ]
Ojeda-Aciego, Manuel [1 ]
Ruiz-Calvino, Jorge [1 ]
机构
[1] Univ Malaga, Dept Matemat Aplicada, E-29071 Malaga, Spain
关键词
fuzzy logic programming; multilattices; fixed point semantics;
D O I
10.1016/j.fss.2006.11.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the use of multilattices as the set of truth-values underlying a general fuzzy logic programming framework. On the one hand, some theoretical results about ideals of a multilattice are presented in order to provide an ideal-based semantics; on the other hand, a restricted semantics, in which interpretations assign elements of a multilattice to each propositional symbol, is presented and analysed. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:674 / 688
页数:15
相关论文
共 21 条
[11]   THEORY OF GENERALIZED ANNOTATED LOGIC PROGRAMMING AND ITS APPLICATIONS [J].
KIFER, M ;
SUBRAHMANIAN, VS .
JOURNAL OF LOGIC PROGRAMMING, 1992, 12 (04) :335-367
[12]  
LAKHSMANAN L, 2001, THEOR PRACT LOG PROG, V1, P5
[13]  
Loyer Y, 2004, LECT NOTES COMPUT SC, V3153, P513
[14]   Generalizations of lattices via non-deterministic operators [J].
Martínez, J ;
Gutiérrez, G ;
de Guzmán, IP ;
Cordero, P .
DISCRETE MATHEMATICS, 2005, 295 (1-3) :107-141
[15]  
Medina J, 2006, LECT NOTES ARTIF INT, V3849, P61
[16]  
Medina J., 2001, Lecture Notes in Artificial Intelligence, V2173, P351
[17]  
Rachunek J, 1974, ACTA U PALACKI OLOMU, V45, P77
[18]   A fixed point theorem in partially ordered sets and some applications to matrix equations [J].
Ran, ACM ;
Reurings, MCB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (05) :1435-1443
[19]   Clausal logic and logic programming in algebraic domains [J].
Rounds, WC ;
Zhang, GQ .
INFORMATION AND COMPUTATION, 2001, 171 (02) :183-200
[20]  
Stouti A., 2004, ARCH MATH, V40, P273