Fuzzy logic programming via multilattices

被引:34
作者
Medina, Jesus [1 ]
Ojeda-Aciego, Manuel [1 ]
Ruiz-Calvino, Jorge [1 ]
机构
[1] Univ Malaga, Dept Matemat Aplicada, E-29071 Malaga, Spain
关键词
fuzzy logic programming; multilattices; fixed point semantics;
D O I
10.1016/j.fss.2006.11.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the use of multilattices as the set of truth-values underlying a general fuzzy logic programming framework. On the one hand, some theoretical results about ideals of a multilattice are presented in order to provide an ideal-based semantics; on the other hand, a restricted semantics, in which interpretations assign elements of a multilattice to each propositional symbol, is presented and analysed. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:674 / 688
页数:15
相关论文
共 21 条
[1]  
[Anonymous], 1955, CZECH MATH J
[2]  
Birkhoff G., 1973, Lattice Theory
[3]  
Cordero P, 2004, ANN MATH ARTIF INTEL, V42, P369, DOI 10.1023/B:AMAI.0000038312.77514.3c
[4]  
DAMASIO C, 2004, LECT NOTES ARTIF INT, V3229, P260
[5]  
Damasio C.V., 2001, LECT NOTES ARTIF INT, V2143, P748
[6]   BILATTICES AND THE SEMANTICS OF LOGIC PROGRAMMING [J].
FITTING, M .
JOURNAL OF LOGIC PROGRAMMING, 1991, 11 (02) :91-116
[7]  
Gratzer G, 1998, General Lattice Theory
[8]   AN AXIOMATIC CHARACTERIZATION OF MULTILATTICES [J].
HANSEN, DJ .
DISCRETE MATHEMATICS, 1981, 33 (01) :99-101
[9]   SOME RESULTS INVOLVING MULTILATTICE IDEALS AND DISTRIBUTIVITY [J].
JOHNSTON, IJ .
DISCRETE MATHEMATICS, 1990, 83 (01) :27-35
[10]   Fixed point theorems in logic programming [J].
Khamsi, MA ;
Misane, D .
ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 1997, 21 (2-4) :231-243