On the geometry of lambda-symmetries and PDE reduction

被引:55
作者
Gaeta, G
Morando, P
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 27期
关键词
D O I
10.1088/0305-4470/37/27/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a geometrical characterization of lambda-prolongations of vector fields, and hence of lambda-symmetries of ODEs. This allows an extension to the case of PDEs and systems of PDEs; in this context the central object is a horizontal I-form mu, and we speak of mu-prolongations of vector fields and mu-symmetries of PDEs. We show that these are as good as standard symmetries in providing symmetry reduction of PDEs and systems, and explicit invariant solutions.
引用
收藏
页码:6955 / 6975
页数:21
相关论文
共 17 条
[1]   Group invariant solutions without transversality [J].
Anderson, IM ;
Fels, ME ;
Torre, CG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 212 (03) :653-686
[2]  
CICOGNA G, 2004, RELATION STANDARD MU
[3]  
Duistermaat J. J., 2000, Lie groups
[4]  
Gaeta G., 1994, Nonlinear Symmetries and Nonlinear Equations
[5]   New symmetry reductions for some ordinary differential equations [J].
Gandarias, ML ;
Medina, E ;
Muriel, C .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2002, 9 (Suppl 1) :47-58
[6]   Weak transversality and partially invariant solutions [J].
Grundland, AM ;
Tempesta, P ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (06) :2704-2722
[7]  
Krasil'schik I. S., 1999, Symmetries and Conservation Laws for Differential Equations of Mathematical Physics
[8]  
Muriel C, 2003, J LIE THEORY, V13, P167
[9]   Integrability of equations admitting the nonsolvable symmetry algebra so(3,R) [J].
Muriel, C ;
Romero, JL .
STUDIES IN APPLIED MATHEMATICS, 2002, 109 (04) :337-352
[10]   C∞-symmetries and non-solvable symmetry algebras [J].
Muriel, C ;
Romero, JL .
IMA JOURNAL OF APPLIED MATHEMATICS, 2001, 66 (05) :477-498