Artificial intelligence for early detection of pancreatic adenocarcinoma: The future is promising

被引:19
作者
Mendoza Ladd, Antonio [1 ]
Diehl, David L. [2 ]
机构
[1] Texas Tech Univ, Hlth Sci Ctr El Paso, Div Gastroenterol, Dept Internal Med, 4800 Alberta Ave, El Paso, TX 79905 USA
[2] Geisinger Med Ctr, Dept Gastroenterol & Nutr, Danville, PA 17822 USA
关键词
Pancreatic adenocarcinoma; Artificial intelligence; Neural network; Future perspectives; Early diagnosis; Improved performance; ENDOSCOPIC ULTRASOUND ELASTOGRAPHY; NEURAL-NETWORK ANALYSIS; DUCTAL ADENOCARCINOMA; DIFFERENTIAL-DIAGNOSIS; AUTOMATIC SEGMENTATION; EUS IMAGES; CANCER; PREDICTION; MACHINE; KNOWLEDGE;
D O I
10.3748/wjg.v27.i13.1283
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Pancreatic ductal adenocarcinoma (PDAC) is a worldwide public health concern. Despite extensive research efforts toward improving diagnosis and treatment, the 5-year survival rate at best is approximately 15%. This dismal figure can be attributed to a variety of factors including lack of adequate screening methods, late symptom onset, and treatment resistance. Pancreatic ductal adenocarcinoma remains a grim diagnosis with a high mortality rate and a significant psy-chological burden for patients and their families. In recent years artificial intelligence (AI) has permeated the medical field at an accelerated pace, bringing potential new tools that carry the promise of improving diagnosis and treatment of a variety of diseases. In this review we will summarize the landscape of AI in diagnosis and treatment of PDAC.
引用
收藏
页码:1283 / 1295
页数:13
相关论文
共 66 条
[1]   PDAC-ANN: an artificial neural network to predict pancreatic ductal adenocarcinoma based on gene expression [J].
Almeida, Palloma Porto ;
Cardoso, Cristina Padre ;
de Freitas, Leandro Martins .
BMC CANCER, 2020, 20 (01)
[2]  
[Anonymous], 2014, UNDERSTANDING MACHIN, DOI DOI 10.1017/CBO9781107298019
[3]   Progress in cancer survival, mortality, and incidence in seven high-income countries 1995-2014 (ICBP SURVMARK-2): a population-based study [J].
Arnold, Melina ;
Rutherford, Mark J. ;
Bardot, Aude ;
Ferlay, Jacques ;
Andersson, Therese M-L ;
Myklebust, Tor Age ;
Tervonen, Hanna ;
Thursfield, Vicky ;
Ransom, David ;
Shack, Lorraine ;
Woods, Ryan R. ;
Turner, Donna ;
Leonfellner, Suzanne ;
Ryan, Susan ;
Saint-Jacques, Nathalie ;
De, Prithwish ;
McClure, Carol ;
Ramanakumar, Agnihotram V. ;
Stuart-Panko, Heather ;
Engholm, Gerda ;
Walsh, Paul M. ;
Jackson, Christopher ;
Vernon, Sally ;
Morgan, Eileen ;
Gavin, Anna ;
Morrison, David S. ;
Huws, Dyfed W. ;
Porter, Geoff ;
Butler, John ;
Bryant, Heather ;
Currow, David C. ;
Hiom, Sara ;
Parkin, D. Max ;
Sasieni, Peter ;
Lambert, Paul C. ;
Moller, Bjorn ;
Soerjomataram, Isabelle ;
Bray, Freddie .
LANCET ONCOLOGY, 2019, 20 (11) :1493-1505
[4]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[5]   Meta-analysis of transcriptome data identifies a novel 5-gene pancreatic adenocarcinoma classifier [J].
Bhasin, Manoj K. ;
Ndebele, Kenneth ;
Bucur, Octavian ;
Yee, Eric U. ;
Otu, Hasan H. ;
Plati, Jessica ;
Bullock, Andrea ;
Gu, Xuesong ;
Castan, Eduardo ;
Zhang, Peng ;
Najarian, Robert ;
Muraru, Maria S. ;
Miksad, Rebecca ;
Khosravi-Far, Roya ;
Libermann, Towia A. .
ONCOTARGET, 2016, 7 (17) :23263-23281
[6]   Fully Convolutional Neural Networks Improve Abdominal Organ Segmentation [J].
Bobo, Meg F. ;
Bao, Shunxing ;
Huo, Yuankai ;
Yao, Yuang ;
Virostko, Jack ;
Plassard, Andrew J. ;
Lyu, Ilwoo ;
Assad, Albert ;
Abramson, Richard G. ;
Hilmes, Melissa A. ;
Landman, Bennett A. .
MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
[7]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]
[8]   Neural network dose models for knowledge-based planning in pancreatic SBRT [J].
Campbell, Warren G. ;
Miften, Moyed ;
Olsen, Lindsey ;
Stumpf, Priscilla ;
Schefter, Tracey ;
Goodman, Karyn A. ;
Jones, Bernard L. .
MEDICAL PHYSICS, 2017, 44 (12) :6148-6158
[9]   Distributed deep learning networks among institutions for medical imaging [J].
Chang, Ken ;
Balachandar, Niranjan ;
Lam, Carson ;
Yi, Darvin ;
Brown, James ;
Beers, Andrew ;
Rosen, Bruce ;
Rubin, Daniel L. ;
Kalpathy-Cramer, Jayashree .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2018, 25 (08) :945-954
[10]  
Chapple M., 2020, WHAT IS MACHINE LEAR