Least Squares Support Vector Machine-Based Multivariate Generalized Predictive Control for Parabolic Distributed Parameter Systems with Control Constraints

被引:5
作者
Ai, Ling [1 ,2 ,3 ]
Xu, Yang [1 ]
Deng, Liwei [2 ]
Teo, Kok Lay [3 ,4 ]
机构
[1] Harbin Univ Sci & Technol, Dept Automat, Harbin 150086, Peoples R China
[2] Harbin Univ Sci & Technol, Minist Educ, Key Lab Adv Mfg & Intelligent Technol, Harbin 150086, Peoples R China
[3] Curtin Univ, Sch Elect Engn Comp & Math Sci, Perth, WA 6845, Australia
[4] Sunway Univ, Sch Math Sci, Subang Jaya 47500, Selangor, Malaysia
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 03期
基金
中国国家自然科学基金;
关键词
multivariate generalized predictive control; parabolic distributed parameter systems; least squares support vector machine; control constraints; diffusion-reaction process; MODEL ORDER REDUCTION; PDE SYSTEMS;
D O I
10.3390/sym13030453
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This manuscript addresses a new multivariate generalized predictive control strategy using the least squares support vector machine for parabolic distributed parameter systems. First, a set of proper orthogonal decomposition-based spatial basis functions constructed from a carefully selected set of data is used in a Galerkin projection for the building of an approximate low-dimensional lumped parameter systems. Then, the temporal autoregressive exogenous model obtained by the least squares support vector machine is applied in the design of a multivariate generalized predictive control strategy. Finally, the effectiveness of the proposed multivariate generalized predictive control strategy is verified through a numerical simulation study on a typical diffusion-reaction process in radical symmetry.
引用
收藏
页数:14
相关论文
共 34 条
[1]   Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models [J].
Aggelogiannaki, Eleni ;
Sarimveis, Haralambos .
COMPUTERS & CHEMICAL ENGINEERING, 2008, 32 (06) :1225-1237
[2]  
Ai L., 2020, P 39 CHIN CONTR C SH, P2407
[3]  
[Anonymous], 1989, AICHE J
[5]  
Christofides P.D., 2001, SYS CON FDN, V1st ed.
[6]   GENERALIZED PREDICTIVE CONTROL .1. THE BASIC ALGORITHM [J].
CLARKE, DW ;
MOHTADI, C ;
TUFFS, PS .
AUTOMATICA, 1987, 23 (02) :137-148
[7]   GENERALIZED PREDICTIVE CONTROL .2. EXTENSIONS AND INTERPRETATIONS [J].
CLARKE, DW ;
MOHTADI, C ;
TUFFS, PS .
AUTOMATICA, 1987, 23 (02) :149-160
[8]  
Deng H., 2005, IEEE T CONTR SYST TE, V13, P700
[9]   Nonlinear generalized predictive control based on online least squares support vector machines [J].
Guo, Zhenkai ;
Guan, Xinping .
NONLINEAR DYNAMICS, 2015, 79 (02) :1163-1168
[10]  
Hua Chen, 2011, Control Theory & Applications, V28, P1711