Spectra and variance of quantum random variables

被引:3
作者
Farenick, Douglas [1 ]
Kozdron, Michael J. [1 ]
Plosker, Sarah [2 ]
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[2] Brandon Univ, Dept Math & Comp Sci, Brandon, MB R7A 6A9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Positive operator-valued measure; Quantum probability measure; Quantum random variable; Variance; Quantum noise; Smearing; NOISE; OPERATORS;
D O I
10.1016/j.jmaa.2015.09.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study essentially bounded quantum random variables and show that the Gelfand spectrum of such a quantum random variable psi coincides with the hypoconvex hull of the essential range of psi. Moreover, a notion of operator-valued variance is introduced, leading to a formulation of the moment problem in the context of quantum probability spaces in terms of operator-theoretic properties involving semi invariant subspaces and spectral theory. As an application of quantum variance, new measures of random and inherent quantum noise are introduced for measurements of quantum systems, modifying some recent ideas of Polterovich [17]. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1106 / 1122
页数:17
相关论文
共 21 条
[1]  
[Anonymous], LECT NOTES PHYS MONO
[2]  
[Anonymous], 1993, Real and Functional Analysis
[3]  
[Anonymous], 1979, Wiley Series in Probability and Mathematical Statistics
[4]   ON THE SINGULAR-VALUES OF A PRODUCT OF OPERATORS [J].
BHATIA, R ;
KITTANEH, F .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :272-277
[5]   COMPLETELY POSITIVE MAPS ON CSTAR-ALGEBRAS AND LEFT MATRICIAL SPECTRA OF AN OPERATOR [J].
BUNCE, J ;
SALINAS, N .
DUKE MATHEMATICAL JOURNAL, 1976, 43 (04) :747-774
[6]   Noise and disturbance in quantum measurement [J].
Busch, P ;
Heinonen, T ;
Lahti, P .
PHYSICS LETTERS A, 2004, 320 (04) :261-270
[7]  
Busch P., 1995, LECT NOTES PHYS MONO, V31
[8]   Introduction to quantum noise, measurement, and amplification [J].
Clerk, A. A. ;
Devoret, M. H. ;
Girvin, S. M. ;
Marquardt, Florian ;
Schoelkopf, R. J. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1155-1208
[9]  
Davidson K. R., 1996, C ALGEBRAS EXAMPLE A
[10]   Conditional expectation and Bayes' rule for quantum random variables and positive operator valued measures [J].
Farenick, Douglas ;
Kozdron, Michael J. .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (04)