Perturbation of the Drazin inverse for matrices with equal eigenprojections at zero

被引:0
作者
González, NC
Koliha, JJ
Wei, YM
机构
[1] Univ Politecn Madrid, Fac Informat, Dept Matemat Aplicada, E-28660 Madrid, Spain
[2] Univ Melbourne, Dept Math & Stat, Melbourne, Vic, Australia
[3] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
关键词
eigenprojection; Drazin inverse; perturbation bounds; EP matrices;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A(pi) denote the eigenprojection of a matrix A corresponding to the eigenvalue 0. We characterize matrices B such that B-pi = A(pi) ,and derive from the results: (1) error bounds for the Drazin inverse of a perturbation, (2) improvement of error bounds given recently by Wei [10], Wei and Wang [11] and Castro Gonzalez et al. [4], and (3) a new characterization of EP matrices. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:181 / 189
页数:9
相关论文
共 11 条
[1]  
CAMPBELL S. L., 1979, Generalized inverses of linear transformations
[2]  
Campbell S.L, 1980, Linear and Multilinear Algebra, V8, P265
[3]   CONTINUITY PROPERTIES OF DRAZIN PSEUDOINVERSE [J].
CAMPBELL, SL ;
MEYER, CD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (01) :77-83
[4]  
GONZALEZ NC, 1999, PERTURBATION DRAZIN
[5]  
Koliha JJ, 1998, STUD MATH, V131, P167
[6]  
KOLIHA JJ, 1999, APPL MATH, V44, P289
[7]   THE CONDITION OF A FINITE MARKOV-CHAIN AND PERTURBATION BOUNDS FOR THE LIMITING PROBABILITIES [J].
MEYER, CD .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1980, 1 (03) :273-283
[8]  
Rakocevic V, 1999, J OPERAT THEOR, V41, P55
[9]   THE ERROR BOUND OF THE PERTURBATION OF THE DRAZIN INVERSE [J].
RONG, GH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1982, 47 (OCT) :159-168
[10]   On the perturbation of the group inverse and oblique projection [J].
Wei, YM .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 98 (01) :29-42