Superconvergence of H1-Galerkin mixed finite element methods for parabolic problems

被引:9
作者
Tripathy, Madhusmita [1 ]
Sinha, Rajen K. [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati 781039, Assam, India
关键词
parabolic problem; H1-Galerkin mixed finite element method; superconvergence; error estimates; ELLIPTIC PROBLEMS; EQUATIONS;
D O I
10.1080/00036810903208163
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the semidiscrete H1-Galerkin mixed finite element method for parabolic problems over rectangular partitions. The well-known optimal order error estimate in the L2-norm for the flux is of order O(hk+1) (SIAM J. Numer. Anal. 35 (2), (1998), pp. 712-727), where k epsilon 1 is the order of the approximating polynomials employed in the Raviart-Thomas element. We derive a superconvergence estimate of order O(hk+3) between the H1-Galerkin mixed finite element approximation and an appropriately defined local projection of the flux variable when k epsilon 1. A the new approximate solution for the flux with superconvergence of order O(hk+3) is realized via a postprocessing technique using local projection methods.
引用
收藏
页码:1213 / 1231
页数:19
相关论文
共 21 条
[11]   SUPERCONVERGENCE OF THE VELOCITY ALONG THE GAUSS LINES IN MIXED FINITE-ELEMENT METHODS [J].
EWING, RE ;
LAZAROV, RD ;
WANG, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (04) :1015-1029
[12]   Superconvergence of mixed finite element approximations over quadrilaterals [J].
Ewing, RE ;
Liu, MM ;
Wang, JP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :772-787
[13]  
Fortin M., 1991, Mixed and Hybrid Finite Element Methods
[14]  
Gunzburger M., 1989, FINITE ELEMENT METHO
[15]  
Johnson C., 1981, RAIRO Analyse Numerique, V15, P41
[16]   A MIXED FINITE-ELEMENT METHOD FOR THE HEAT-FLOW PROBLEM [J].
NEITTAANMAKI, P ;
SARANEN, J .
BIT, 1981, 21 (03) :342-346
[17]   An H1-Galerkin mixed finite element method for parabolic partial differential equations [J].
Pani, AK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (02) :712-727
[18]   H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations [J].
Pani, AK ;
Fairweather, G .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (02) :231-252
[19]   LEAST-SQUARES MIXED FINITE-ELEMENTS FOR 2ND-ORDER ELLIPTIC PROBLEMS [J].
PEHLIVANOV, AI ;
CAREY, GF ;
LAZAROV, RD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (05) :1368-1377
[20]  
Raviart P.A., 1977, LECT NOTES MATH, V606, P293