Nonrelativistic Limit of Ground State Solutions for Nonlinear Dirac-Klein-Gordon Systems

被引:0
作者
Dong, Xiaojing [1 ]
Tang, Zhongwei [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, MOE, Beijing, Peoples R China
来源
MINIMAX THEORY AND ITS APPLICATIONS | 2022年 / 7卷 / 02期
关键词
Nonlinear Dirac-Klein-Gordon systems; nonrelativistic limit; ground state solution; EQUATION; SPACE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonrelativistic limit and some properties of the solutions(psi, ?) := (u, v, ?) is an element of C-2 x C-2 x Rfor the following nonlinear Dirac-Klein-Gordon systems: { ic sigma(3)(k=1) alpha(k)& part;(k)psi - mc(2)beta psi - omega psi- lambda?beta psi = |psi|(p-2)psi, {- ?? + c(2)M(2)? = 4 pi lambda(beta psi) middot psi,where p is an element of [(5)/(12), (3)/(8)], c denotes the speed of light, m > 0 is the mass of the electron. We show that the first component u and the last one ? of ground state solutions for nonlinear Dirac-Klein-Gordon systems converge to zero and the second one v converges to corresponding solutions of a coupled system of nonlinear Schrodinger equations as the speed of light tends to infinity for electrons with small mass. Moreover, we also prove the uniform boundedness and the exponential decay properties of the solutions for the nonlinear Dirac-Klein-Gordon systems with respect to the speed of light c.
引用
收藏
页码:253 / 276
页数:24
相关论文
共 35 条
[1]  
[Anonymous], 1983, Fundamental Principles of Mathematical Science
[2]   Numerical Methods and Comparison for the Dirac Equation in the Nonrelativistic Limit Regime [J].
Bao, Weizhu ;
Cai, Yongyong ;
Jia, Xiaowei ;
Tang, Qinglin .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 71 (03) :1094-1134
[3]   Deformation theorems on non-metrizable vector spaces and applications to critical point theory [J].
Bartsch, Thomas ;
Ding, Yanheng .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (12) :1267-1288
[4]   Solutions of nonlinear Dirac equations [J].
Bartsch, Thomas ;
Ding, Yanheng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 226 (01) :210-249
[5]   On the asymptotic analysis of the Dirac-Maxwell system in the nonrelativistic limit [J].
Bechouche, P ;
Mauser, NJ ;
Selberg, S .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2005, 2 (01) :129-182
[6]  
BERESTYCKI H, 1985, CR ACAD SCI I-MATH, V300, P319
[7]  
Bjorken J.D., 1965, Relativistic Quantum Mechanics
[8]   On the nonlinear Dirac equation on noncompact metric graphs [J].
Borrelli, William ;
Carlone, Raffaele ;
Tentarelli, Lorenzo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 278 :326-357
[9]   NONLINEAR DIRAC EQUATION ON GRAPHS WITH LOCALIZED NONLINEARITIES: BOUND STATES AND NONRELATIVISTIC LIMIT [J].
Borrelli, William ;
Carlone, Raffaele ;
Tentarelli, Lorenzo .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (02) :1046-1081
[10]  
Dautray R., 2000, SPECTRAL THEORY APPL, V3