Bayesian analysis of stochastic volatility-in-mean model with leverage and asymmetrically heavy-tailed error using generalized hyperbolic skew Student's t-distribution

被引:11
作者
Leao, William L. [1 ]
Abanto-Valle, Carlos A. [1 ]
Chen, Ming-Hui [2 ]
机构
[1] Univ Fed Rio de Janeiro, Dept Stat, Caixa Postal 68530, BR-21945970 Rio De Janeiro, Brazil
[2] Univ Connecticut, Dept Stat, 215 Glenbrook Rd,U-4120, Storrs, CT 06269 USA
关键词
Feedback and leverage effect; GH skew Student-t distribution; Markov chain Monte Carlo; Non-Gaussian and nonlinear state space models; Stochastic volatility-in-mean; TIME-SERIES MODELS; LIKELIHOOD INFERENCE; RETURNS; SIMULATION; SMOOTHER; SAMPLER;
D O I
10.4310/SII.2017.v10.n4.a1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A stochastic volatility-in-mean model with correlated errors using the generalized hyperbolic skew Student-t (GH-ST) distribution provides a robust alternative to the parameter estimation for daily stock returns in the absence of normality. An efficient Markov chain Monte Carlo (MCMC) sampling algorithm is developed for parameter estimation. The deviance information, the Bayesian predictive information and the log-predictive score criterion are used to assess the fit of the proposed model. The proposed method is applied to an analysis of the daily stock return data from the Standard & Poor's 500 index (S& P 500). The empirical results reveal that the stochastic volatility-in-mean model with correlated errors and GH-ST distribution leads to a significant improvement in the goodness-of-fit for the S& P 500 index returns dataset over the usual normal model.
引用
收藏
页码:529 / 541
页数:13
相关论文
共 45 条
[1]   Bayesian Estimation of a Skew-Student-t Stochastic Volatility Model [J].
Abanto-Valle, C. A. ;
Lachos, V. H. ;
Dey, Dipak K. .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2015, 17 (03) :721-738
[2]   Stochastic volatility in mean models with scale mixtures of normal distributions and correlated errors: A Bayesian approach [J].
Abanto-Valle, C. A. ;
Migon, H. S. ;
Lachos, V. H. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (05) :1875-1887
[3]   Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions [J].
Abanto-Valle, C. A. ;
Bandyopadhyay, D. ;
Lachos, V. H. ;
Enriquez, I. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) :2883-2898
[4]   Bayesian inference for stochastic volatility models using the generalized skew-t distribution with applications to the Shenzhen Stock Exchange returns [J].
Abanto-Valle, Carlos A. ;
Wang, Caifeng ;
Wang, Xiaojing ;
Wang, Fei-Xing ;
Chen, Ming-Hui .
STATISTICS AND ITS INTERFACE, 2014, 7 (04) :487-502
[5]   Stochastic volatility in mean models with heavy-tailed distributions [J].
Abanto-Valle, Carlos A. ;
Migon, Helio S. ;
Lachos, Victor H. .
BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2012, 26 (04) :402-422
[6]  
Ando T., 2006, J JAPAN STAT SOC, V36, P173
[7]   Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models [J].
Ando, Tomohiro .
BIOMETRIKA, 2007, 94 (02) :443-458
[8]  
[Anonymous], 1995, Federal Reserve Bank of Minneapolis, DOI DOI 10.21034/SR.148
[9]   Volatility puzzles: a simple framework for gauging return-volatility regressions [J].
Bollerslev, T ;
Zhou, H .
JOURNAL OF ECONOMETRICS, 2006, 131 (1-2) :123-150
[10]  
Celeux G, 2006, BAYESIAN ANAL, V1, P651, DOI 10.1214/06-BA122