Local quantum uncertainty and interferometric power for a two-qubit system under decoherence channels with memory

被引:11
作者
Guo, You-neng [1 ]
Yang, Cheng [1 ]
Tian, Qing-long [2 ]
Wang, Guo-you [3 ]
Zeng, Ke [1 ]
机构
[1] Changsha Univ, Coll Elect Commun & Elect Engn, Changsha 410022, Hunan, Peoples R China
[2] Changsha Univ, Coll Math & Comp Sci, Changsha 410022, Hunan, Peoples R China
[3] Hunan Univ Technol, Coll Sci, Zhuzhou 412007, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Local quantum uncertainty; Interferometric power; Quantum correlations; Decoherence channels with memory;
D O I
10.1007/s11128-019-2490-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Via local quantum uncertainty (LQU) and interferometric power (IP) as a measure of nonclassical correlations, we study the dynamics of quantum correlations for two non-interacting qubits passing through decoherence channels where the channels with successive uses are correlated. The effect of three different types of decoherence channels, such as amplitude damping, phase damping, and depolarizing channels, on quantum correlations has been discussed in detail. The explicit analytical expressions of LQU and IP for a class of Bell-diagonal states under these decoherence channels have been derived. Our results show that the behaviors of both LQU and IP exhibit similar variation under the amplitude damping and phase damping channels, with monotonic decay from an increasing decoherence rate, but decay more slowly when the memory coefficient of the channel increases. Compared to the phenomenon of LQU under a depolarizing channel, we find that there exists a sudden change of LQU under both amplitude damping and phase damping channels by choosing proper initial parameters. Finally, we compare the dynamics of LQU with that of IP under decoherence channels. Our results also confirm the amount of quantum correlations measured by LQU is smaller than IP.
引用
收藏
页数:13
相关论文
共 50 条