Temporally harmonic oscillons in Newtonian fluids

被引:78
作者
Arbell, H [1 ]
Fineberg, J [1 ]
机构
[1] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
关键词
D O I
10.1103/PhysRevLett.85.756
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Stationary, highly localized (oscillon) structures are observed in a Newtonian fluid when nonlinear surface waves are parametrically excited with two frequencies. Oscillons have a characteristic structure, that of periodically self-focusing jets. In contrast to previously observed oscillons in highly nonNewtonian media, these states are temporally harmonic with the forcing. For wave amplitudes greater than a critical value, they nucleate from an initial pattern via a hysteretic bifurcation, and can therefore be localized on a background of patterns with a variety of different spatial symmetries.
引用
收藏
页码:756 / 759
页数:4
相关论文
共 23 条
  • [1] Two-mode rhomboidal states in driven surface waves
    Arbell, H
    Fineberg, J
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (04) : 654 - 657
  • [2] Spatial and temporal dynamics of two interacting modes in parametrically driven surface waves
    Arbell, H
    Fineberg, J
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (20) : 4384 - 4387
  • [3] AN EXACT SOLUTION FOR PROGRESSIVE CAPILLARY WAVES OF ARBITRARY AMPLITUDE
    CRAPPER, GD
    [J]. JOURNAL OF FLUID MECHANICS, 1957, 2 (06) : 532 - 540
  • [4] Oscillon-type structures and their interaction in a Swift-Hohenberg model
    Crawford, C
    Riecke, H
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1999, 129 (1-2) : 83 - 92
  • [5] Spatiotemporal chaos in electroconvection
    Dennin, M
    Ahlers, G
    Cannell, DS
    [J]. SCIENCE, 1996, 272 (5260) : 388 - 390
  • [6] EDWARDS WS, 1993, PHYS REV E, V47, P1623
  • [7] FAUVE S, 1998, HYDRODYNAMICS NONLIN
  • [8] Viscous effects in droplet-ejecting capillary waves
    Goodridge, CL
    Shi, WT
    Hentschel, HGE
    Lathrop, DP
    [J]. PHYSICAL REVIEW E, 1997, 56 (01): : 472 - 475
  • [9] TRAVELING WAVES AND SPATIAL VARIATION IN THE CONVECTION OF A BINARY MIXTURE
    HEINRICHS, R
    AHLERS, G
    CANNELL, DS
    [J]. PHYSICAL REVIEW A, 1987, 35 (06): : 2761 - 2764
  • [10] Superlattice patterns in surface waves
    Kudrolli, A
    Pier, B
    Gollub, JP
    [J]. PHYSICA D, 1998, 123 (1-4): : 99 - 111