RecA-independent recombination is efficient but limited by exonucleases

被引:81
作者
Dutra, Bethany E.
Sutera, Vincent A., Jr.
Lovett, Susan T.
机构
[1] Brandeis Univ, Rosenstiel Basic Med Sci Res Ctr, Waltham, MA 02454 USA
[2] Brandeis Univ, Dept Biol, Waltham, MA 02454 USA
关键词
DNA rearrangements; DNA repair; genetic recombination; genetic exchange; replication fork repair;
D O I
10.1073/pnas.0608293104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genetic recombination in bacteria is facilitated by the RecA strand transfer protein and strongly depends on the homology between interacting sequences. RecA-independent recombination is detectable but occurs at extremely low frequencies and is less responsive to the extent of homology. In this article, we show that RecA-independent recombination in Escherichia coli is depressed by the redundant action of single-strand exonucleases. In the absence of multiple single-strand exonucleases, the efficiency of RecA-independent recombination events, involving either gene conversion or crossing-over, is markedly increased to levels rivaling RecA-dependent events. This finding suggests that RecA-independent recombination is not intrinsically inefficient but is limited by single-strand DNA substrate availability. Crossing-over is inhibited by exonucleases ExoI, ExoVII, ExoX, and RecJ, whereas only ExoI and RecJ abort gene-conversion events. In ExoI(-) RecJ(-) strains, gene conversion can be accomplished by transformation of short single-strand DNA oligonucleotides and is more efficient when the oligonucleotide is complementary to the lagging-strand replication template. We propose that E. coli encodes an unknown mechanism for RecA-independent recombination (independent of prophage recombination systems) that is targeted to replication forks. The potential of RecA-independent recombination to mediate exchange at short homologies suggests that it may contribute significantly to genomic change in bacteria, especially in species with reduced cellular exonuclease activity or those that encode DNA protection factors.
引用
收藏
页码:216 / 221
页数:6
相关论文
共 34 条
[1]  
Bachmann B., 1996, Escherichia coli and Salmonella: cellular and molecular biology, V2, P2460
[2]   Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms [J].
Brendel, V ;
Brocchieri, L ;
Sandler, SJ ;
Clark, AJ ;
Karlin, S .
JOURNAL OF MOLECULAR EVOLUTION, 1997, 44 (05) :528-541
[3]   Slipped misalignment mechanisms of deletion formation: In vivo susceptibility to nucleases [J].
Bzymek, M ;
Saveson, CJ ;
Feschenko, VV ;
Lovett, ST .
JOURNAL OF BACTERIOLOGY, 1999, 181 (02) :477-482
[4]  
CHASE JW, 1974, J BIOL CHEM, V249, P4553
[5]  
CHASE JW, 1974, J BIOL CHEM, V249, P4545
[6]   RECOMBINATION DEFICIENT MUTANTS OF ESCHERICHIA-COLI AND OTHER BACTERIA [J].
CLARK, AJ .
ANNUAL REVIEW OF GENETICS, 1973, 7 :67-86
[7]   ISOLATION AND CHARACTERIZATION OF RECOMBINATION-DEFICIENT MUTANTS OF ESCHERICHIA COLI K12 [J].
CLARK, AJ ;
MARGULIES, AD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1965, 53 (02) :451-+
[8]   HIGH-EFFICIENCY TRANSFORMATION OF ESCHERICHIA-COLI BY HIGH-VOLTAGE ELECTROPORATION [J].
DOWER, WJ ;
MILLER, JF ;
RAGSDALE, CW .
NUCLEIC ACIDS RESEARCH, 1988, 16 (13) :6127-6145
[9]   Cis and trans-acting effects on a mutational hotspot involving a replication template switch [J].
Dutra, BE ;
Lovett, ST .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 356 (02) :300-311
[10]   High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides [J].
Ellis, HM ;
Yu, DG ;
DiTizio, T ;
Court, DL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (12) :6742-6746