Complete biosynthesis of a sulfated chondroitin in Escherichia coli

被引:51
作者
Badri, Abinaya [1 ]
Williams, Asher [1 ]
Awofiranye, Adeola [2 ]
Datta, Payel [2 ]
Xia, Ke [1 ]
He, Wenqin [1 ]
Fraser, Keith [2 ]
Dordick, Jonathan S. [1 ,2 ]
Linhardt, Robert J. [1 ,2 ,3 ]
Koffas, Mattheos A. G. [1 ,2 ]
机构
[1] Rensselaer Polytech Inst, Dept Chem & Biol Engn, Troy, NY 12181 USA
[2] Rensselaer Polytech Inst, Dept Biol Sci, Troy, NY 12181 USA
[3] Rensselaer Polytech Inst, Dept Chem & Chem Biol, Troy, NY 12181 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/s41467-021-21692-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sulfated glycosaminoglycans (GAGs) are a class of important biologics that are currently manufactured by extraction from animal tissues. Although such methods are unsustainable and prone to contamination, animal-free production methods have not emerged as competitive alternatives due to complexities in scale-up, requirement for multiple stages and cost of co-factors and purification. Here, we demonstrate the development of single microbial cell factories capable of complete, one-step biosynthesis of chondroitin sulfate (CS), a type of GAG. We engineer E. coli to produce all three required components for CS production-chondroitin, sulfate donor and sulfotransferase. In this way, we achieve intracellular CS production of similar to 27 mu g/g dry-cell-weight with about 96% of the disaccharides sulfated. We further explore four different factors that can affect the sulfation levels of this microbial product. Overall, this is a demonstration of simple, one-step microbial production of a sulfated GAG and marks an important step in the animal-free production of these molecules.
引用
收藏
页数:10
相关论文
共 56 条
[1]   Improved Heterologous Production of the Nonribosomal Peptide-Polyketide Siderophore Yersiniabactin Through Metabolic Engineering and Induction Optimization [J].
Ahmadi, Mahmoud Kamal ;
Pfeifer, Blaine A. .
BIOTECHNOLOGY PROGRESS, 2016, 32 (06) :1412-1417
[2]   Anti-cancer effect of dung beetle glycosaminoglycans on melanoma [J].
Ahn, Mi Young ;
Kim, Ban Ji ;
Kim, Ha Jeong ;
Jin, Jang Mi ;
Yoon, Hyung Joo ;
Hwang, Jae Sam ;
Park, Kun-Koo .
BMC CANCER, 2019, 19 (1)
[3]   Increased 3′-Phosphoadenosine-5′-phosphosulfate Levels in Engineered Escherichia coli Cell Lysate Facilitate the In Vitro Synthesis of Chondroitin Sulfate A [J].
Badri, Abinaya ;
Williams, Asher ;
Xia, Ke ;
Linhardt, Robert J. ;
Koffas, Mattheos A. G. .
BIOTECHNOLOGY JOURNAL, 2019, 14 (09)
[4]   The road to animal-free glycosaminoglycan production: current efforts and bottlenecks [J].
Badri, Abinaya ;
Williams, Asher ;
Linhardt, Robert J. ;
Koffas, Mattheos A. G. .
CURRENT OPINION IN BIOTECHNOLOGY, 2018, 53 :85-92
[5]   Functional analysis of genes responsible for the synthesis of the B-band O antigen of Pseudomonas aeruginosa serotype O6 lipopolysaccharide [J].
Bélanger, M ;
Burrows, LL ;
Lam, JS .
MICROBIOLOGY-UK, 1999, 145 :3505-3521
[6]   Functional characterization of gne (UDP-N-acetylglucosamine-4-epimerase), Wzz (chain length determinant), and Wzy (O-antigen polymerase) of Yersinia enterocolitica serotype O:8 [J].
Bengoechea, JA ;
Pinta, E ;
Salminen, T ;
Oertelt, C ;
Holst, O ;
Radziejewska-Lebrecht, J ;
Piotrowska-Seget, Z ;
Venho, R ;
Skurnik, M .
JOURNAL OF BACTERIOLOGY, 2002, 184 (15) :4277-4287
[7]   Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system [J].
Bikard, David ;
Jiang, Wenyan ;
Samai, Poulami ;
Hochschild, Ann ;
Zhang, Feng ;
Marraffini, Luciano A. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (15) :7429-7437
[8]   Chondroitin sulphate: a focus on osteoarthritis [J].
Bishnoi, Mamta ;
Jain, Ankit ;
Hurkat, Pooja ;
Jain, Sanjay K. .
GLYCOCONJUGATE JOURNAL, 2016, 33 (05) :693-705
[9]  
Brennan Z., 2017, CHINESE HEPARIN CONT
[10]  
Chen YM, 2020, MAR DRUGS, V18, DOI 10.3390/md18010001