Multifunctional non-Pt ternary catalyst for the hydrogen oxidation and oxygen evolution reactions in reversal-tolerant anode

被引:34
作者
Lee, Seung Woo [1 ]
Lee, Bong Ho [1 ]
Kim, Tae-Yang [1 ]
Baik, Chaekyung [1 ]
Kim, Mi So [2 ]
Chai, Geun Seok [2 ]
Pak, Chanho [1 ]
机构
[1] Gwangju Inst Sci & Technol, Inst Integrated Technol, Sch Integrated Technol, Grad Program Energy Technol, Gwangju 61005, South Korea
[2] Radiat Technol eXcellence RTX, Daejeon 34025, South Korea
关键词
Non-Pt ternary alloy catalyst; Reversal-tolerant anode; Hydrogen oxidation reaction; Oxygen evolution reaction; Polymer electrolyte membrane fuel cell; PERFORMANCE; ELECTROCATALYSTS; STABILITY; STRATEGY; SUPPORT;
D O I
10.1016/j.catcom.2019.105758
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The reversal-tolerant anode (RTA) has been introduced to mitigate the fatal anode degradation by cell voltage reversal under hydrogen fuel starvation in fuel cell electric vehicles (FCEVs). The RTA employs an oxygen evolution reaction (OER) catalyst in the anode to boost water electrolysis rather than carbon corrosion under fuel starvation. Graphitic carbon-supported IrRu4Y0.5 exhibits outstanding performances for hydrogen oxidation reaction and OER. In single cell test, the IrRu4Y0.5 delivers similar to 21% better performance and longer RTA durability (similar to 64 min) than Pt/C catalyst. It is anticipated that IrRuY-based alloy catalysts could replace high-priced Pt-based catalysts as multifunctional RTA for FCEVs.
引用
收藏
页数:5
相关论文
共 32 条
[1]   Effect of Adding CeO2 to RuO2-IrO2 Mixed Nanocatalysts: Activity towards the Oxygen Evolution Reaction and Stability in Acidic Media [J].
Audichon, Thomas ;
Morisset, Sophie ;
Napporn, Teko W. ;
Kokoh, K. Boniface ;
Comminges, Clement ;
Morais, Claudia .
CHEMELECTROCHEM, 2015, 2 (08) :1128-1137
[2]   Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective [J].
Banham, Dustin ;
Ye, Siyu .
ACS ENERGY LETTERS, 2017, 2 (03) :629-638
[3]   Impact of IrRu oxygen evolution reaction catalysts on Pt nanostructured thin films under start-up/shutdown cycling [J].
Cullen, David A. ;
More, Karren L. ;
Atanasoska, Ljiljana L. ;
Atanasoski, Radoslav T. .
JOURNAL OF POWER SOURCES, 2014, 269 :671-681
[4]   PEM fuel cell system control: A review [J].
Daud, W. R. W. ;
Rosli, R. E. ;
Majlan, E. H. ;
Hamid, S. A. A. ;
Mohamed, R. ;
Husaini, T. .
RENEWABLE ENERGY, 2017, 113 :620-638
[5]   On the oxygen evolution reaction at IrO2-SnO2 mixed-oxide electrodes [J].
Ferro, Sergio ;
Rosestolato, Davide ;
Martinez-Huitle, Carlos Alberto ;
De Battisti, Achille .
ELECTROCHIMICA ACTA, 2014, 146 :257-261
[6]   On the impact of water activity on reversal tolerant fuel cell anode performance and durability [J].
Hong, Bo Ki ;
Mandal, Pratiti ;
Oh, Jong-Gil ;
Litster, Shawn .
JOURNAL OF POWER SOURCES, 2016, 328 :280-288
[7]   Oxide-Carbon Nanofibrous Composite Support for a Highly Active and Stable Polymer Electrolyte Membrane Fuel-Cell Catalyst [J].
Jeon, Yukwon ;
Ji, Yunseong ;
Cho, Yong Il ;
Lee, Chanmin ;
Park, Dae-Hwan ;
Shul, Yong-Gun .
ACS NANO, 2018, 12 (07) :6819-6829
[8]  
Jung S.-M., 2016, EFFECTS TRANSITION M, P2660
[9]   Synthesis of Pt3Y and Other Early-Late Intermetallic Nanoparticles by Way of a Molten Reducing Agent [J].
Kanady, Jacob S. ;
Leidinger, Peter ;
Haas, Andreas ;
Titlbach, Sven ;
Schunk, Stephan ;
Schierle-Arndt, Kerstin ;
Crumlin, Ethan J. ;
Wu, Cheng Hao ;
Alivisatos, A. Paul .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (16) :5672-5675
[10]   High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media [J].
Kim, Jaemin ;
Shih, Pei-Chieh ;
Tsao, Kai-Chieh ;
Pan, Yung-Tin ;
Yin, Xi ;
Sun, Cheng-Jun ;
Yang, Hong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (34) :12076-12083