Machine Learning Approach for Predicting the Effect of Statistical Variability in Si Junctionless Nanowire Transistors

被引:79
作者
Carrillo-Nunez, Hamilton [1 ]
Dimitrova, Nadezhda [1 ]
Asenov, Asen [1 ]
Georgiev, Vihar [1 ]
机构
[1] Univ Glasgow, Sch Engn, Glasgow G12 8LT, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Nanowires; TCAD simulations; statistical variability; deep learning; neural networks; SILICON NANOWIRES; SIMULATION; GATE;
D O I
10.1109/LED.2019.2931839
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter investigates the possibility to replace numerical TCAD device simulations with a multi-layer neural network (NN). We explore if it is possible to train the NN with the required accuracy in order to predict device characteristics of thousands of transistors without executing TCAD simulations. Here, in order to answer this question, we present a hierarchical multi-scale simulation study of a silicon junctionless nanowire field-effect transistor (JL-NWT) with a gate length of 150 nm and diameter of an Si channel of 8 nm. All device simulations are based on the drift-diffusion (DD) formalism with activated density gradient (DG) quantum corrections. For the purpose of this letter, we perform statistical numerical experiments of a set of 1380 automictically different JL-NWTs. Each device has a unique random distribution of discrete dopants (RDD) within the silicon body. From those statistical simulations, we extract important figures of merit (FoM) such as OFF-current (I-OFF) and ON-current (I-ON) subthreshold slope (SS), and voltage threshold (V-TH). Based on those statistical simulations, we train a multi-layer NN and we compare the obtained results with a general linear model (GLM). This shows the potential of using NN in the field of device modeling and simulation with a potential application to significantly reduce the computational cost.
引用
收藏
页码:1366 / 1369
页数:4
相关论文
共 15 条
[1]   Toward Nanowire Electronics [J].
Appenzeller, Joerg ;
Knoch, Joachim ;
Bjoerk, Mikael I. ;
Riel, Heike ;
Schmid, Heinz ;
Riess, Walter .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (11) :2827-2845
[2]   Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 μm MOSFET's:: A 3-D "atomistic" simulation study [J].
Asenov, A .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1998, 45 (12) :2505-2513
[3]   Simulation of statistical variability in nano-CMOS transistors using drift-diffusion, Monte Carlo and non-equilibrium Green's function techniques [J].
Asenov, Asen ;
Brown, Andrew R. ;
Roy, Gareth ;
Cheng, Binjie ;
Alexander, Craig ;
Riddet, Craig ;
Kovac, Urban ;
Martinez, Antonio ;
Seoane, Natalia ;
Roy, Scott .
JOURNAL OF COMPUTATIONAL ELECTRONICS, 2009, 8 (3-4) :349-373
[4]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[5]   Use of density gradient quantum corrections in the simulation of statistical variability in MOSFETs [J].
Brown, Andrew R. ;
Watling, Jeremy R. ;
Roy, Gareth ;
Riddet, Craig ;
Alexander, Craig L. ;
Kovac, Urban ;
Martinez, Antonio ;
Asenov, Asen .
JOURNAL OF COMPUTATIONAL ELECTRONICS, 2010, 9 (3-4) :187-196
[6]   Impact of Randomly Distributed Dopants on Ω-Gate Junctionless Silicon Nanowire Transistors [J].
Carrillo-Nunez, Hamilton ;
Mirza, Muhamad M. ;
Paul, Douglas J. ;
MacLaren, Donald A. ;
Asenov, Asen ;
Georgiev, Vihar P. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (05) :1692-1698
[7]  
Colinge JP, 2008, INTEGR CIRCUIT SYST, P1, DOI 10.1007/978-0-387-71752-4_1
[8]   Comparison of artificial neural networks and general linear model approaches for the analysis of abrasive wear of concrete [J].
Gencel, Osman ;
Kocabas, Fikret ;
Gok, Mustafa Sabri ;
Koksal, Fuat .
CONSTRUCTION AND BUILDING MATERIALS, 2011, 25 (08) :3486-3494
[9]   Experimental and Simulation Study of Silicon Nanowire Transistors Using Heavily Doped Channels [J].
Georgiev, Vihar P. ;
Mirza, Muhammad M. ;
Dochioiu, Alexandru-Iustin ;
Adamu-Lema, Fikru ;
Amoroso, Salvatore M. ;
Towie, Ewan ;
Riddet, Craig ;
MacLaren, Donald A. ;
Asenov, Asen ;
Paul, Douglas J. .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2017, 16 (05) :727-735
[10]  
Hagan M.T., 1996, Neural Network design