Liberation of orthogonal Lie groups

被引:113
作者
Banica, Teodor [1 ]
Speicher, Roland [2 ]
机构
[1] Univ Toulouse 3, Dept Math, F-31062 Toulouse, France
[2] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Quantum group; Noncrossing partition; COMPACT MATRIX PSEUDOGROUPS; QUANTUM PERMUTATION-GROUPS; INTEGRATION; DUALITY;
D O I
10.1016/j.aim.2009.06.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that under suitable assumptions, we have a one-to-one correspondence between classical groups and free quantum groups, in the compact orthogonal case. We classify the groups under correspondence, with the result that there are exactly 6 of them: O(n), S(n), H(n), B(n), S(n)', B(n)'. We investigate the representation theory aspects of the correspondence, with the result that for O(n), S(n), H(n), B(n), this is compatible with the Bercovici-Pata bijection. Finally, we discuss some more general classification problems in the compact orthogonal case, notably with the construction of a new quantum group. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1461 / 1501
页数:41
相关论文
共 27 条
[1]  
[Anonymous], 1992, American Mathematical Soc.
[2]   Symmetries of a generic coaction [J].
Banica, T .
MATHEMATISCHE ANNALEN, 1999, 314 (04) :763-780
[3]  
BANICA T, 2008, ANN MATH BLAISE PASC, V15, P135, DOI [10.5802/ambp.243, DOI 10.5802/AMBP.243]
[4]   Quantum permutation groups: A survey [J].
Banica, Teodor ;
Bichon, Julien ;
Collins, Benoit .
NONCOMMUTATIVE HARMONIC ANALYSIS WITH APPLICATIONS TO PROBABILITY, 2007, 78 :13-+
[5]   Integration over quantum permutation groups [J].
Banica, Teodor ;
Collins, Benoit .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 242 (02) :641-657
[6]  
Banica T, 2009, J NONCOMMUT GEOM, V3, P327
[7]  
Banica Teodor, 2007, J. Ramanujan Math. Soc., V22, P345
[8]   Classical and free infinitely divisible distributions and random matrices [J].
Benaych-Georges, F .
ANNALS OF PROBABILITY, 2005, 33 (03) :1134-1170
[9]   Stable laws and domains of attraction in free probability theory [J].
Bercovici, H ;
Pata, V .
ANNALS OF MATHEMATICS, 1999, 149 (03) :1023-1060
[10]   A matrix representation of the Bercovivi-Pata bijection [J].
Cabanal-Duvillard, T .
ELECTRONIC JOURNAL OF PROBABILITY, 2005, 10 :632-661