Ordinary stoichiometry of extraordinary microorganisms

被引:8
作者
Neveu, M. [1 ]
Poret-Peterson, A. T. [1 ]
Anbar, A. D. [1 ,2 ]
Elser, J. J. [3 ]
机构
[1] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA
[2] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ USA
[3] Arizona State Univ, Sch Life Sci, Tempe, AZ USA
基金
美国国家科学基金会;
关键词
YELLOWSTONE-NATIONAL-PARK; RNA GENE DATABASE; ELEMENTAL COMPOSITION; BACTERIAL COMMUNITIES; BIOGEOCHEMICAL CYCLES; MARINE-PHYTOPLANKTON; CHEMICAL-COMPOSITION; STATISTICAL-ANALYSIS; USE EFFICIENCIES; TRACE-METALS;
D O I
10.1111/gbi.12153
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
All life on Earth seems to be made of the same chemical elements in relatively conserved proportions (stoichiometry). Whether this stoichiometry is conserved in settings that differ radically in physicochemical conditions (extreme environments) from those commonly encountered elsewhere on the planet provides insight into possible stoichiometries for putative life beyond Earth. Here, we report measurements of elemental stoichiometry for extremophile microbes from hot springs of Yellowstone National Park (YNP). Phototrophic and chemotrophic microbes were collected in locations spanning large ranges of temperature (24 degrees C to boiling), pH (1.6-9.6), redox (0.1-7.2 mg L-1 dissolved oxygen), and nutrient concentrations (0.01-0.25 mg L-1 NO2-, 0.7-12.9 mg L-1 NO3-, 0.01-42 mg L-1 NH4+, 0.003-1.1 mg L-1 P mostly as phosphate). Despite these extreme conditions, the microbial cells sampled had a major and trace element stoichiometry within the ranges commonly encountered for microbes living in the more moderate environments of lakes and surface oceans. The cells did have somewhat high C:P and N:P ratios that are consistent with phosphorus (P) limitation. Furthermore, chemotrophs and phototrophs had similar compositions with the exception of Mo content, which was enriched in cells derived from chemotrophic sites. Thus, despite the extraordinary physicochemical and biological diversity of YNP environments, life in these settings, in a stoichiometric sense, remains much the same as we know it elsewhere.
引用
收藏
页码:33 / 53
页数:21
相关论文
共 50 条
  • [41] Carbon: Nitrogen: Phosphorus Stoichiometry in Fungi: A Meta-Analysis
    Zhang, Ji
    Elser, James J.
    FRONTIERS IN MICROBIOLOGY, 2017, 8
  • [42] Coexistence and community structure in a consumer resource model with implicit stoichiometry
    Orlando, Paul A.
    Brown, Joel S.
    Wise, David H.
    THEORETICAL POPULATION BIOLOGY, 2012, 82 (02) : 77 - 84
  • [43] Seasonal patterns of organic matter stoichiometry along a mountain catchment
    Diaz Villanueva, Veronica
    Bastidas Navarro, Marcela
    Albarino, Ricardo
    HYDROBIOLOGIA, 2016, 771 (01) : 227 - 238
  • [44] Environmental control of marine phytoplankton stoichiometry in the North Atlantic Ocean
    Sauterey, Boris
    Ward, Ben A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (01)
  • [45] Leaf Nitrogen and Phosphorus Stoichiometry of Cyclocarya paliurus across China
    Liu, Yang
    Liu, Qingliang
    Wang, Tongli
    Fang, Shengzuo
    FORESTS, 2018, 9 (12):
  • [46] The influence of chlorothalonil on the activity of soil microorganisms and enzymes
    Bacmaga, Malgorzata
    Wyszkowska, Jadwiga
    Kucharski, Jan
    ECOTOXICOLOGY, 2018, 27 (09) : 1188 - 1202
  • [47] Scientists' warning to humanity: microorganisms and climate change
    Cavicchioli, Ricardo
    Ripple, William J.
    Timmis, Kenneth N.
    Azam, Farooq
    Bakken, Lars R.
    Baylis, Matthew
    Behrenfeld, Michael J.
    Boetius, Antje
    Boyd, Philip W.
    Classen, Aimee T.
    Crowther, Thomas W.
    Danovaro, Roberto
    Foreman, Christine M.
    Huisman, Jef
    Hutchins, David A.
    Jansson, Janet K.
    Karl, David M.
    Koskella, Britt
    Welch, David B. Mark
    Martiny, Jennifer B. H.
    Moran, Mary Ann
    Orphan, Victoria J.
    Reay, David S.
    Remais, Justin V.
    Rich, Virginia I.
    Singh, Brajesh K.
    Stein, Lisa Y.
    Stewart, Frank J.
    Sullivan, Matthew B.
    van Oppen, Madeleine J. H.
    Weaver, Scott C.
    Webb, Eric A.
    Webster, Nicole S.
    NATURE REVIEWS MICROBIOLOGY, 2019, 17 (09) : 569 - 586
  • [48] What will it take to understand the ecology of symbiotic microorganisms?
    Douglas, Angela E.
    ENVIRONMENTAL MICROBIOLOGY, 2018, 20 (06) : 1920 - 1924
  • [49] Assessment and statistical modelling of airborne microorganisms in Madrid
    Maria Cordero, Jose
    Nunez, Andres
    Garcia, Ana M.
    Borge, Rafael
    ENVIRONMENTAL POLLUTION, 2021, 269 (269)
  • [50] Microorganisms from Ancient Soils of Tatarstan Republic
    Tukhbatova, R. I.
    Tazetdinova, D. I.
    Alimova, F. K.
    Melnikov, L. V.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA ESTESTVENNYE NAUKI, 2008, 150 (02): : 225 - 230