On rack cohomology

被引:56
作者
Etingof, P
Graña, M
机构
[1] MIT, Dept Math, Off 2 176, Cambridge, MA 02319 USA
[2] MIT, Dept Math, Off 2 155, Cambridge, MA 02319 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0022-4049(02)00159-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the lower bounds for Betti numbers of the rack, quandle and degeneracy cohomology given in Carter et al. (J. Pure Appl. Algebra, 157 (2001) 135) are in fact equalities. We compute as well the Betti numbers of the twisted cohomology introduced in Carter et al. (Twisted quandle cohomology theory and cocycle knot invariants, math. GT/0108051). We also give a group-theoretical interpretation of the second cohomology group for racks. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:49 / 59
页数:11
相关论文
共 12 条
[1]  
ANDRUSKIEWITSCH N, IN PRESS RACKS POINT
[2]  
[Anonymous], 1955, THEORIE GROUPES LIE
[3]  
Carter JS, 2001, J PURE APPL ALGEBRA, V157, P135
[4]  
CARTER JS, MATHGT0108051
[5]  
CARTER JS, MATHGT0112026
[6]  
Fenn R., JAMES BUNDLES APPL
[7]  
Grana M., 2000, New trends in Hopf algebra theory (La Falda, 1999), V267, P111, DOI 10.1090/conm/267/04267
[8]   A CLASSIFYING INVARIANT OF KNOTS, THE KNOT QUANDLE [J].
JOYCE, D .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1982, 23 (01) :37-65
[9]  
LITHERLAND RA, MATHGT0106165
[10]  
Lu JH, 2000, DUKE MATH J, V104, P1