Two efficient CRISPR/Cas9 systems for gene editing in soybean

被引:24
|
作者
Carrijo, Jessica [1 ,2 ]
Illa-Berenguer, Eudald [3 ]
LaFayette, Peter [3 ,4 ]
Torres, Nathalia [2 ]
Aragao, Francisco J. L. [1 ,2 ]
Parrott, Wayne [3 ,4 ]
Vianna, Giovanni R. [1 ,2 ]
机构
[1] Embrapa Recursos Genet & Biotecnol, Parque Estacao Biol, PqEB, Av W5 Norte Final 716, BR-70770917 Brasilia, DF, Brazil
[2] Univ Brasilia, Dept Mol Biol, BR-70910900 Brasilia, DF, Brazil
[3] Univ Georgia, Ctr Appl Genet Technol, Athens, GA 30602 USA
[4] Univ Georgia, Dept Crop & Soil Sci, Athens, GA 30602 USA
关键词
Genome editing; Low phytic acid; Single transcriptional unit; Two-component transcriptional unit; TARGETED MUTAGENESIS; GENOME; DESIGN; IMPROVEMENT; PROMOTERS; DIVERSITY; SEQUENCE; PLANTS;
D O I
10.1007/s11248-021-00246-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Genome editing using CRISPR/Cas9 has been highlighted as a powerful tool for crop improvement. Nevertheless, its efficiency can be improved, especially for crops with a complex genome, such as soybean. In this work, using the CRISPR/Cas9 technology we evaluated two CRISPR systems, a one-component vs. a two-component strategy. In a simplified system, the single transcriptional unit (STU), SpCas9 and sgRNA are driven by only one promoter, and in the conventional system, the two-component transcriptional unit (TCTU), SpCas9, is under the control of a pol II promoter and the sgRNAs are under the control of a pol III promoter. A multiplex system with three targets was designed targeting two different genes, GmIPK1 and GmIPK2, coding for enzymes from the phytic acid synthesis pathway. Both systems were tested using the hairy root soybean methodology. Results showed gene-specific edition. For the GmIPK1 gene, edition was observed in both configurations, with a deletion of 1 to 749 base pairs; however, the TCTU showed higher indel frequencies. For GmIPK2 major exclusions were observed in both systems, but the editing efficiency was low for STU. Both systems (STU or TCTU) have been shown to be capable of promoting effective gene editing in soybean. The TCTU configuration proved to be preferable, since it was more efficient. The STU system was less efficient, but the size of the CRISPR/Cas cassette was smaller.
引用
收藏
页码:239 / 249
页数:11
相关论文
共 50 条
  • [1] Two efficient CRISPR/Cas9 systems for gene editing in soybean
    Jéssica Carrijo
    Eudald Illa-Berenguer
    Peter LaFayette
    Nathalia Torres
    Francisco J. L. Aragão
    Wayne Parrott
    Giovanni R. Vianna
    Transgenic Research, 2021, 30 : 239 - 249
  • [2] CRISPR/CAS9 GENE EDITING
    不详
    CHEMICAL & ENGINEERING NEWS, 2015, : 26 - 27
  • [3] Combining CRISPR/Cas9 and rAAV Templates for Efficient Gene Editing
    Kaulich, Manuel
    Dowdy, Steven F.
    NUCLEIC ACID THERAPEUTICS, 2015, 25 (06) : 287 - 296
  • [4] Efficient BoPDS Gene Editing in Cabbage by the CRISPR/Cas9 System
    Ma, Cunfa
    Liu, Mengci
    Li, Qinfei
    Si, Jun
    Ren, Xuesong
    Song, Hongyuan
    HORTICULTURAL PLANT JOURNAL, 2019, 5 (04) : 164 - 169
  • [5] Application of CRISPR/Cas9 System for Efficient Gene Editing in Peanut
    Neelakandan, Anjanasree K.
    Wright, David A.
    Traore, Sy M.
    Ma, Xingli
    Subedi, Binita
    Veeramasu, Suman
    Spalding, Martin H.
    He, Guohao
    PLANTS-BASEL, 2022, 11 (10):
  • [6] Efficient BoPDS Gene Editing in Cabbage by the CRISPR/Cas9 System
    Cunfa Ma
    Mengci Liu
    Qinfei Li
    Jun Si
    Xuesong Ren
    Hongyuan Song
    Horticultural Plant Journal, 2019, 5 (04) : 164 - 169
  • [7] An efficient multiplex approach to CRISPR/Cas9 gene editing in citrus
    Sagawa, Cintia H. D.
    Thomson, Geoffrey
    Mermaz, Benoit
    Vernon, Corina
    Liu, Siqi
    Jacob, Yannick
    Irish, Vivian F.
    PLANT METHODS, 2024, 20 (01)
  • [8] Efficient Mitochondrial Genome Editing by CRISPR/Cas9
    Jo, Areum
    Ham, Sangwoo
    Lee, Gum Hwa
    Lee, Yun-Il
    Kim, SangSeong
    Lee, Yun-Song
    Shin, Joo-Ho
    Lee, Yunjong
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [9] CRISPR/Cas9 Essential Gene Editing in Drosophila
    Osadchiy, I. S.
    Kamalyan, S. O.
    Tumashova, K. Y.
    Georgiev, P. G.
    Maksimenko, O. G.
    ACTA NATURAE, 2023, 15 (02): : 70 - 74
  • [10] Optical Control of CRISPR/Cas9 Gene Editing
    Hemphill, James
    Borchardt, Erin K.
    Brown, Kalyn
    Asokan, Aravind
    Deiters, Alexander
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (17) : 5642 - 5645