Artinian dimension and isoradical of modules

被引:16
作者
Facchini, Alberto [1 ]
Nazemian, Zahra [2 ]
机构
[1] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Artinian modules; Dimensions of modules; Chain conditions; RIGHT IDEALS; RINGS;
D O I
10.1016/j.jalgebra.2017.03.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is a continuation of our previous article [9]. We introduce an "artinian dimension" of modules, which allows us to study isoartinian modules, and an "isoradical" of a module, which is the analogue of the (Jacobson) radical of a module. We study the modules generated by isosimple submodules, and modules of finite I-length, which are analogous to modules of finite composition length. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:66 / 87
页数:22
相关论文
共 26 条
  • [1] [Anonymous], 1992, GRAD TEXTS MATH
  • [2] EMBEDDING RIGHT CHAIN RINGS IN CHAIN RINGS
    BRUNGS, HH
    TORNER, G
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1978, 30 (05): : 1079 - 1086
  • [3] Chatters A., 1980, Research Notes in Mathematics, V44
  • [4] Cozzens J., 1975, Simple noetherian rings
  • [5] Facchini A., 1998, PROGR MATH
  • [6] Modules with chain conditions up to isomorphism
    Facchini, Alberto
    Nazemian, Zahra
    [J]. JOURNAL OF ALGEBRA, 2016, 453 : 578 - 601
  • [7] Loewy Modules with Finite Loewy Invariants and Max Modules with Finite Radical Invariants
    Facchini, Alberto
    Mai Hoang Bien
    [J]. COMMUNICATIONS IN ALGEBRA, 2015, 43 (06) : 2293 - 2307
  • [8] Indecomposable decomposition and couniserial dimension
    Ghorbani, A.
    Jain, S. K.
    Nazemian, Z.
    [J]. BULLETIN OF MATHEMATICAL SCIENCES, 2015, 5 (01) : 121 - 136
  • [9] Goodearl K.R, 1976, PURE APPL MATH, V33
  • [10] GOODEARL KR, 1979, LECT NOTES MATH, V734, P118