Artinian dimension and isoradical of modules

被引:19
作者
Facchini, Alberto [1 ]
Nazemian, Zahra [2 ]
机构
[1] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Artinian modules; Dimensions of modules; Chain conditions; RIGHT IDEALS; RINGS;
D O I
10.1016/j.jalgebra.2017.03.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is a continuation of our previous article [9]. We introduce an "artinian dimension" of modules, which allows us to study isoartinian modules, and an "isoradical" of a module, which is the analogue of the (Jacobson) radical of a module. We study the modules generated by isosimple submodules, and modules of finite I-length, which are analogous to modules of finite composition length. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:66 / 87
页数:22
相关论文
共 26 条
[1]  
[Anonymous], 1992, GRAD TEXTS MATH
[2]   EMBEDDING RIGHT CHAIN RINGS IN CHAIN RINGS [J].
BRUNGS, HH ;
TORNER, G .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1978, 30 (05) :1079-1086
[3]  
Chatters A., 1980, Research Notes in Mathematics, V44
[4]  
Cozzens J., 1975, Simple noetherian rings
[5]  
Facchini A., 1998, PROGR MATH
[6]   Modules with chain conditions up to isomorphism [J].
Facchini, Alberto ;
Nazemian, Zahra .
JOURNAL OF ALGEBRA, 2016, 453 :578-601
[7]   Loewy Modules with Finite Loewy Invariants and Max Modules with Finite Radical Invariants [J].
Facchini, Alberto ;
Mai Hoang Bien .
COMMUNICATIONS IN ALGEBRA, 2015, 43 (06) :2293-2307
[8]   Indecomposable decomposition and couniserial dimension [J].
Ghorbani, A. ;
Jain, S. K. ;
Nazemian, Z. .
BULLETIN OF MATHEMATICAL SCIENCES, 2015, 5 (01) :121-136
[9]  
Goodearl K.R, 1976, PURE APPL MATH, V33
[10]  
GOODEARL KR, 1979, LECT NOTES MATH, V734, P118