Physics basis for the first ITER tungsten divertor

被引:579
作者
Pitts, R. A. [1 ]
Bonnin, X. [1 ]
Escourbiac, F. [1 ]
Frerichs, H. [2 ]
Gunn, J. P. [3 ]
Hirai, T. [1 ]
Kukushkin, A. S. [4 ,5 ]
Kaveeva, E. [6 ]
Miller, M. A. [7 ]
Moulton, D. [8 ]
Rozhansky, V. [6 ]
Senichenkov, I. [6 ]
Sytova, E. [1 ,6 ,9 ]
Schmitz, O. [2 ]
Stangeby, P. C. [10 ]
De Temmerman, G. [1 ]
Veselova, I. [6 ]
Wiesen, S. [11 ]
机构
[1] ITER Org, Route Vinon Sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France
[2] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA
[3] CEA, IRFM, F-13108 St Paul Les Durance, France
[4] Kurchatov Inst, Natl Res Ctr, Akad Kurchatova Pl 1, Moscow 123182, Russia
[5] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Kashirskoe Sh 31, Moscow 115409, Russia
[6] Peter Great St Petersburg Polytech Univ, Polytech Skaya 29, St Petersburg 195251, Russia
[7] Columbia Univ, Sch Engn & Appl Sci, New York, NY 10027 USA
[8] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[9] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[10] Univ Toronto, Inst Aerosp Studies, 4925 Dufferin St, N York, ON M3H 5T6, Canada
[11] Forschungszentrum Julich, Inst Energie & Klimaforsch, Julich, Germany
基金
俄罗斯科学基金会;
关键词
ITER; Tungsten; Divertor; Heat fluxes; SOLPS; ASDEX-UPGRADE; POWER EXHAUST; TRANSIENT; TRANSPORT; DESIGN; EDGE; SOL; MONOBLOCK; OPERATION; EXTRAPOLATION;
D O I
10.1016/j.nme.2019.100696
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
On the eve of component procurement, this paper discusses the present physics basis for the first ITER tungsten (W) divertor, beginning with a reminder of the key elements defining the overall design, and outlining relevant aspects of the Research Plan accompanying the new "staged approach" to ITER nuclear operations which fixes the overall divertor lifetime constraint. The principal focus is on the main design driver, steady state power fluxes in the DT phases, obtained from simulations using the 2-D SOLPS-4.3 and SOLPS-ITER plasma boundary codes, assuming the use of the low Z seeding impurities nitrogen (N) and neon (Ne). A new perspective on the simulation database is adopted, concentrating purely on the divertor physics aspects rather than on the core-edge integration, which has been studied extensively in the course of the divertor design evolution and is published elsewhere. Emphasis is placed on factors which may increase the peak steady state loads: divertor target shaping for component misalignment protection, the influence of fluid drifts, and the consequences of narrow scrape-off layer heat flux channels. All tend to push the divertor into an operating space at higher sub-divertor neutral pressure in order to remain at power flux densities acceptable for the target material. However, a revised criterion for the maximum tolerable loads based on avoidance of W recrystallization, sets an upper limit potentially similar to 50% higher than the previously accepted value of similar to 10 MW m(-2), a consequence both of the choice of material and the finalized component design. Although the simulation database is currently restricted to the 2-D toroidally symmetric situation, considerable progress is now also being made using the EMC3-Eirene 3-D code suite for the assessment of power loading in the presence of magnetic perturbations for ELM control. Some new results for low input power corresponding to the early H-mode operation phases are reported, showing that even if realistic plasma screening is taken into account, significant asymmetric divertor heat fluxes may arise far from the unperturbed strike point. The issue of tolerable limits for transient heat pulses is an open and key question. A new scaling for ELM power deposition has shown that whilst there may be more latitude for operation at higher current without ELM control, the ultimate limit is likely to be set more by material fatigue under large numbers of sub-threshold melting events.
引用
收藏
页数:25
相关论文
共 146 条
[1]   Electron temperature and heat load measurements in the COMPASS divertor using the new system of probes [J].
Adamek, J. ;
Seidl, J. ;
Horacek, J. ;
Komm, M. ;
Eich, T. ;
Panek, R. ;
Cavalier, J. ;
Devitre, A. ;
Peterka, M. ;
Vondracek, P. ;
Stockel, J. ;
Sestak, D. ;
Grover, O. ;
Bilkova, P. ;
Bohm, P. ;
Varju, J. ;
Havranek, A. ;
Weinzettl, V. ;
Lovell, J. ;
Dimitrova, M. ;
Mitosinkova, K. ;
Dejarnac, R. ;
Hron, M. .
NUCLEAR FUSION, 2017, 57 (11)
[2]   Fast measurements of the electron temperature and parallel heat flux in ELMy H-mode on the COMPASS tokamak [J].
Adamek, J. ;
Seidl, J. ;
Komm, M. ;
Weinzettl, V. ;
Panek, R. ;
Stockel, J. ;
Hron, M. ;
Hacek, P. ;
Imrisek, M. ;
Vondracek, P. ;
Horacek, J. ;
Devitre, A. .
NUCLEAR FUSION, 2017, 57 (02)
[3]   Effect of 3D magnetic perturbations on divertor conditions and detachment in tokamak and stellarator [J].
Ahn, J-W ;
Briesemester, A. R. ;
Kobayashi, M. ;
Lore, J. D. ;
Schmitz, O. ;
Diallo, A. ;
Gray, T. K. ;
Lasnier, C. J. ;
LeBlanc, B. P. ;
Maingi, R. ;
McLean, A. G. ;
Sabbagh, S. A. ;
Soukhanovskii, V. A. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (08)
[4]   Numerical analysis of ELM stability with rotation and ion diamagnetic drift effects in JET [J].
Aiba, N. ;
Giroud, C. ;
Honda, M. ;
Delabie, E. ;
Saarelma, S. ;
Frassinetti, L. ;
Lupelli, I. ;
Casson, F. J. ;
Pamela, S. ;
Urano, H. ;
Maggi, C. F. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. ;
Alves, E. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amicucci, L. ;
Amosov, V. ;
Sunden, E. Andersson ;
Angelone, M. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Appelbee, C. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arshad, S. ;
Ash, A. ;
Ashikawa, N. ;
Aslanyan, V. ;
Asunta, O. ;
Auriemma, F. .
NUCLEAR FUSION, 2017, 57 (12)
[5]   Recrystallization kinetics of warm-rolled tungsten in the temperature range 1150-1350 °C [J].
Alfonso, A. ;
Jensen, D. Juul ;
Luo, G. -N. ;
Pantleon, W. .
JOURNAL OF NUCLEAR MATERIALS, 2014, 455 (1-3) :591-594
[6]  
[Anonymous], PHYS REV LETT UNPUB
[7]  
[Anonymous], 2016, Nucl. Mater. Energy., DOI [DOI 10.1016/J.NME, 10.1016/J.NME.2016.07.003, DOI 10.1016/J.NME.2016.07.003]
[8]   Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET [J].
Bernert, M. ;
Wischmeier, M. ;
Huber, A. ;
Reimold, F. ;
Lipschultz, B. ;
Lowry, C. ;
Brezinsek, S. ;
Dux, R. ;
Eich, T. ;
Kallenbach, A. ;
Lebschy, A. ;
Maggi, C. ;
McDermott, R. ;
Puetterich, T. ;
Wiesen, S. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :111-118
[9]   ITER divertor plasma response to time-dependent impurity injection [J].
Bonnin, X. ;
Pitts, R. A. ;
Komarov, V. ;
Escourbiac, F. ;
Merola, M. ;
Bo, L. ;
Wei, L. ;
Pan, L. ;
Kukushkin, A. S. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :1100-1105
[10]   Presentation of the New SOLPS-ITER Code Package for Tokamak Plasma Edge Modelling [J].
Bonnin, Xavier ;
Dekeyser, Wouter ;
Pitts, Richard ;
Coster, David ;
Voskoboynikov, Serguey ;
Wiesen, Sven .
PLASMA AND FUSION RESEARCH, 2016, 11 :1-6