Dosimetric validation of Monte Carlo and analytical dose engines with raster-scanning 1H, 4He, 12C, and 16O ion-beams using an anthropomorphic phantom

被引:20
作者
Mein, Stewart [1 ,2 ,3 ,4 ,5 ]
Kopp, Benedikt [2 ,3 ,4 ,5 ,6 ]
Tessonnier, Thomas [7 ]
Ackermann, Benjamin [2 ,3 ]
Ecker, Swantje [2 ,3 ]
Bauer, Julia [2 ,3 ]
Choi, Kyungdon [8 ,9 ]
Arico, Giulia [10 ]
Ferrari, Alfredo [10 ]
Haberer, Thomas [2 ,3 ]
Debus, Juergen [2 ,3 ,4 ,5 ]
Abdollahi, Amir [1 ,2 ,3 ,4 ]
Mairani, Andrea [2 ,3 ,8 ]
机构
[1] Heidelberg Univ, Div Mol & Translat Radiat Oncol, Natl Ctr Radiat Res Oncol NCRO, Med Sch,HIRO, Heidelberg, Germany
[2] Heidelberg Univ Hosp, Dept Radiat Oncol, Heidelberg Ion Beam Therapy Ctr HIT, Heidelberg, Germany
[3] Heidelberg Univ Hosp, Dept Radiol, Radiat Oncol, Heidelberg, Germany
[4] German Canc Res Ctr, Natl Ctr Tumor Dis NCT, German Canc Consortium DKTK Core Ctr, Heidelberg, Germany
[5] Heidelberg Univ, Fac Phys, Heidelberg, Germany
[6] German Canc Res Ctr, Clin Cooperat Unit Radiooncol, Heidelberg, Germany
[7] Ctr Francois Baclesse, Med Phys Dept, Radiat Oncol, Caen, France
[8] Natl Ctr Oncol Hadrontherapy CNAO, Med Phys, Pavia, Italy
[9] Univ Pavia, Dept Phys, Pavia, Italy
[10] European Org Nucl Res CERN, Geneva, Switzerland
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2019年 / 64卷
关键词
Particle therapy; Pencil beam algorithm; Monte Carlo simulation; GPU; Dosimetry; Anthropomorphic phantom; TREATMENT PLANNING TOOL; PROTON; THERAPY; VERIFICATION; ALGORITHM; CARBON; RADIOTHERAPY; SIMULATIONS; ACCURACY; SYSTEM;
D O I
10.1016/j.ejmp.2019.07.001
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
With high-precision radiotherapy on the rise towards mainstream healthcare, comprehensive validation procedures are essential, especially as more sophisticated technologies emerge. In preparation for the upcoming translation of novel ions, case-/disease-specific ion-beam selection and advanced multi-particle treatment modalities at the Heidelberg Ion-beam Therapy Center (HIT), we quantify the accuracy limits in particle therapy treatment planning under complex heterogeneous conditions for the four ions (H-1, He-4, C-12, O-16) using a Monte Carlo Treatment Planning platform (MCTP), an independent GPU-accelerated analytical dose engine developed in-house (FRoG) and the clinical treatment planning system (Syngo RT Planning). Attaching an anthropomorphic half-head Alderson RANDO phantom to entrance window of a dosimetric verification water tank, a cubic target spread-out Bragg peak (SOBP) was optimized using the MCTP to best resolve effects of anatomic heterogeneities on dose homogeneity. Subsequent forward calculations were executed in FRoG and Syngo. Absolute and relative dosimetry was performed in the experimental beam room using 1D and 2D array ionization chamber detectors. Mean absolute percent deviation in dose (vertical bar%Delta vertical bar) between predictions and PinPoint ionization chamber measurements were within similar to 2% for all investigated ions for both MCTP and FRoG. For protons and carbon ions, vertical bar%Delta vertical bar values were similar to 4% for Syngo. For the four ions, 3D-gamma analysis (3%/3mm criteria) of FLUKA and FRoG presented mean passing rates of 97.0(+/- 2.4)% and 93.6(+/- 4.2)%. FRoG demonstrated satisfactory agreement with gold standard Monte Carlo simulation and measurement, superior to the commercial system. Our preclinical trial landmarks the first measurements taken in anthropomorphic settings for helium, carbon and oxygen ion-beam therapy.
引用
收藏
页码:123 / 131
页数:9
相关论文
共 46 条
[1]   Experimental verification of IMPT treatment plans in an anthropomorphic phantom in the presence of delivery uncertainties [J].
Albertini, F. ;
Casiraghi, M. ;
Lorentini, S. ;
Rombi, B. ;
Lomax, A. J. .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (14) :4415-4431
[2]  
[Anonymous], PHYS MED BIOL
[3]  
Bauer D, 2018, THESIS
[4]   Integration and evaluation of automated Monte Carlo simulations in the clinical practice of scanned proton and carbon ion beam therapy [J].
Bauer, J. ;
Sommerer, F. ;
Mairani, A. ;
Unholtz, D. ;
Farook, R. ;
Handrack, J. ;
Frey, K. ;
Marcelos, T. ;
Tessonnier, T. ;
Ecker, S. ;
Ackermann, B. ;
Ellerbrock, M. ;
Debus, J. ;
Parodi, K. .
PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (16) :4635-4659
[5]   MRI-linac systems will replace conventional IGRT systems within 15 years [J].
Bayouth, John E. ;
Low, Daniel A. ;
Zaidi, Habib .
MEDICAL PHYSICS, 2019, 46 (09) :3753-3756
[6]   The FLUKA Code: Developments and Challenges for High Energy and Medical Applications [J].
Boehlen, T. T. ;
Cerutti, F. ;
Chin, M. P. W. ;
Fosso, A. ;
Ferrari, A. ;
Ortega, P. G. ;
Mairani, A. ;
Sala, P. R. ;
Smirnov, G. ;
Vlachoudisl, V. .
NUCLEAR DATA SHEETS, 2014, 120 :211-214
[7]  
Bohlen TT, 2013, J RADIAT RES, P54
[8]  
Branco Daniela, 2018, Int J Part Ther, V4, P40, DOI 10.14338/IJPT-17-00005.1
[9]   FRoG-A New Calculation Engine for Clinical Investigations with Proton and Carbon Ion Beams at CNAO [J].
Choi, KyungDon ;
Mein, Stewart B. ;
Kopp, Benedikt ;
Magro, Giuseppe ;
Molinelli, Silvia ;
Ciocca, Mario ;
Mairani, Andrea .
CANCERS, 2018, 10 (11)
[10]  
Ciangaru G, 2005, MED PHYS