One-tube SARS-CoV-2 detection platform based on RT-RPA and CRISPR/Cas12a

被引:160
|
作者
Sun, Yangyang [1 ,2 ,3 ,4 ]
Yu, Lei [1 ,2 ,3 ,4 ]
Liu, Chengxi [5 ]
Ye, Shanting [1 ,2 ,3 ,4 ]
Chen, Wei [1 ,2 ,3 ,4 ]
Li, Dechang [6 ]
Huang, Weiren [1 ,2 ,3 ,4 ]
机构
[1] Shenzhen Univ, Affiliated Hosp 1, Shenzhen Peoples Hosp 2, Dept Urol,Int Canc Ctr, Shenzhen, Peoples R China
[2] Shenzhen Univ, Sch Med, Int Canc Ctr, Shenzhen 518060, Peoples R China
[3] Shantou Univ, Affiliated Hosp 1, Shantou 515041, Peoples R China
[4] Guangdong Key Lab Syst Biol & Synthet Biol Urogen, Shenzhen 518035, Peoples R China
[5] Shanghai Jiao Tong Univ, Shanghai Ctr Syst Biomed, Key Lab Syst Biomed, Minist Educ, Shanghai 200240, Peoples R China
[6] Yuebei Second Peoples Hosp, Shaoguan 512000, Guangdong, Peoples R China
基金
国家重点研发计划; 美国国家科学基金会; 中国国家自然科学基金;
关键词
COVID-19; SARS-CoV-2; assay; RT-RPA; CRISPR; Cas;
D O I
10.1186/s12967-021-02741-5
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background COVID-19 has spread rapidly around the world, affecting a large percentage of the population. When lifting certain mandatory measures for an economic restart, robust surveillance must be established and implemented, with nucleic acid detection for SARS-CoV-2 as an essential component. Methods We tried to develop a one-tube detection platform based on RT-RPA (Reverse Transcription and Recombinase Polymerase Isothermal Amplification) and DNA Endonuclease-Targeted CRISPR Trans Reporter (DETECTR) technology, termed OR-DETECTR, to detect SARS-CoV-2. We designed RT-RPA primers of the RdRp and N genes following the SARS-CoV-2 gene sequence. We optimized reaction components so that the detection process could be carried out in one tube. Specificity was demonstrated by detecting nucleic acid samples from pseudoviruses from seven human coronaviruses and Influenza A (H1N1). Clinical samples were used to validate the platform and all results were compared to rRT-PCR. RNA standards and pseudoviruses diluted by different gradients were used to demonstrate the detection limit. Additionally, we have developed a lateral flow assay based on OR-DETECTR for detecting COVID-19. Results The OR-DETECTR detection process can be completed in one tube, which takes approximately 50 min. This method can specifically detect SARS-CoV-2 from seven human coronaviruses and Influenza A (H1N1), with a low detection limit of 2.5 copies/mu l input (RNA standard) and 1 copy/mu l input (pseudovirus). Results of six samples from SARS-CoV-2 patients, eight samples from patients with fever but no SARS-CoV-2 infection, and one mixed sample from 40 negative controls showed that OR-DETECTR is 100% consistent with rRT-PCR. The lateral flow assay based on OR-DETECTR can be used for the detection of COVID-19, and the detection limit is 2.5 copies/mu l input. Conclusions The OR-DETECTR platform for the detection of COVID-19 is rapid, accurate, tube closed, easy-to-operate, and free of large instruments.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Establishment of an ultrasensitive and visual detection platform for Neospora caninum based-on the RPA-CRISPR/Cas12a system
    Wang, Li
    Li, Xin
    Li, Lu
    Cao, Lili
    Zhao, Zhiteng
    Huang, Taojun
    Li, Jianhua
    Zhang, Xichen
    Cao, Songgao
    Zhang, Nan
    Wang, Xiaocen
    Gong, Pengtao
    TALANTA, 2024, 269
  • [22] Evaluation of the RT-LAMP/CRISPR-Cas12 diagnostic method for SARS-COV-2
    Peduti, Graziela Parente
    Diniz, Michely Correia
    ACTA SCIENTIARUM-HEALTH SCIENCES, 2023, 45
  • [23] Efficient, Rapid, and Sensitive Detection of Plant RNA Viruses With One-Pot RT-RPA-CRISPR/Cas12a Assay
    Aman, Rashid
    Mahas, Ahmed
    Marsic, Tin
    Hassan, Norhan
    Mahfouz, Magdy M.
    FRONTIERS IN MICROBIOLOGY, 2020, 11
  • [24] iSCAN: An RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2
    Ali, Zahir
    Aman, Rashid
    Mahas, Ahmed
    Rao, Gundra Sivakrishna
    Tehseen, Muhammad
    Marsic, Tin
    Salunke, Rahul
    Subudhi, Amit K.
    Hala, Sharif M.
    Hamdan, Samir M.
    Pain, Arnab
    Alofi, Fadwa S.
    Alsomali, Afrah
    Hashem, Anwar M.
    Khogeer, Asim
    Almontashiri, Naif A. M.
    Abedalthagafi, Malak
    Hassan, Norhan
    Mahfouz, Magdy M.
    VIRUS RESEARCH, 2020, 288
  • [25] CRISPR/Cas12a Technology Combined With RPA for Rapid and Portable SFTSV Detection
    Huang, Mengqian
    Liu, Sihua
    Xu, Yanan
    Li, Aqian
    Wu, Wei
    Liang, Mifang
    Niu, Guoyu
    Wang, Zhiyun
    Wang, Tao
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [26] VIR-CRISPR: Visual in-one-tube ultrafast RT-PCR and CRISPR method for instant SARS-CoV-2 detection
    Wang, Rui
    Li, Yongfang
    Pang, Yanan
    Zhang, Fang
    Li, Fuyou
    Luo, Shihua
    Qian, Chunyan
    ANALYTICA CHIMICA ACTA, 2022, 1212
  • [27] Point-of-care detection of Neisseria gonorrhoeae based on RPA-CRISPR/Cas12a
    Tu, Qianrong
    Cao, Xiaoying
    Ling, Chao
    Xiang, Lili
    Yang, Ping
    Huang, Shifeng
    AMB EXPRESS, 2023, 13 (01)
  • [28] NoV GⅡ.2亚型RT-RPA-CRISPR/Cas12a检测方法的建立
    樊成
    曾昊
    卢星月
    康婕
    雷兰兰
    刘静
    郑玉红
    钱卫东
    王婷
    中国动物检疫, 2024, 41 (08) : 90 - 97
  • [29] A CRISPR-Cas12a-based specific enhancer for more sensitive detection of SARS-CoV-2 infection
    Huang, Weiren
    Yu, Lei
    Wen, Donghua
    Wei, Dong
    Sun, Yangyang
    Zhao, Huailong
    Ye, Yu
    Chen, Wei
    Zhu, Yongqiang
    Wang, Lijun
    Wang, Li
    Wu, Wenjuan
    Zhao, Qianqian
    Xu, Yong
    Gu, Dayong
    Nie, Guohui
    Zhu, Dongyi
    Guo, Zhongliang
    Ma, Xiaoling
    Niu, Liman
    Huang, Yikun
    Liu, Yuchen
    Peng, Bo
    Zhang, Renli
    Zhang, Xiuming
    Li, Dechang
    Liu, Yang
    Yang, Guoliang
    Liu, Lanzheng
    Zhou, Yunying
    Wang, Yunshan
    Hou, Tieying
    Gao, Qiuping
    Li, Wujiao
    Chen, Shuo
    Hu, Xuejiao
    Han, Mei
    Zheng, Huajun
    Weng, Jianping
    Cai, Zhiming
    Zhang, Xinxin
    Song, Fei
    Zhao, Guoping
    Wang, Jin
    EBIOMEDICINE, 2020, 61
  • [30] Evaluation of a Lyophilized CRISPR-Cas12 Assay for a Sensitive, Specific, and Rapid Detection of SARS-CoV-2
    Ana Curti, Lucia
    Primost, Ivana
    Valla, Sofia
    Ibanez Alegre, Daiana
    Olguin Perglione, Cecilia
    Daniel Repizo, Guillermo
    Lara, Julia
    Parcerisa, Ivana
    Palacios, Antonela
    Eugenia Llases, Maria
    Rinflerch, Adriana
    Barrios, Melanie
    Pereyra Bonnet, Federico
    Alejandra Gimenez, Carla
    Natalia Marcone, Debora
    VIRUSES-BASEL, 2021, 13 (03):