Electric field tunable anisotropic magnetoresistance effect in an epitaxial Co2FeSi/BaTiO3 interfacial multiferroic system

被引:16
作者
Yamada, S. [1 ,2 ]
Teramoto, Y. [2 ]
Matsumi, D. [2 ]
Kepaptsoglou, D. [3 ,4 ]
Azaceta, I [4 ]
Murata, T. [2 ]
Kudo, K. [2 ]
Lazarov, V. K. [4 ]
Taniyama, T. [1 ,5 ]
Hamaya, K. [1 ,2 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Ctr Spintron Res Network, Toyonaka, Osaka 5608531, Japan
[2] Osaka Univ, Grad Sch Engn Sci, Dept Syst Innovat, Toyonaka, Osaka 5608531, Japan
[3] SuperSTEM Lab, Daresbury WA4 4AD, England
[4] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
[5] Nagoya Univ, Dept Phys, Chikusa Ku, Nagoya, Aichi 4648602, Japan
基金
英国工程与自然科学研究理事会;
关键词
MAGNETIC-ANISOTROPY; FERROMAGNETISM;
D O I
10.1103/PhysRevMaterials.5.014412
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study magnetic and magnetotransport properties of an epitaxial interfacial multiferroic system consisting of a ferromagnetic Heusler-alloy Co2FeSi and a ferroelectric-oxide BaTiO3. L2(1)-ordered Co2FeSi epilayers on BaTiO3 (001) show an in-plane uniaxial magnetic anisotropy with strong temperature dependence, induced by the presence of the magnetoelastic effect via the spin-orbit interaction at the Co2FeSi/BaTiO3 (001) interface. In the Co2FeSi Hall-bar devices, the anisotropic magnetoresistance (AMR) hysteretic curves depending on inplane magnetization reversal processes on the a and c domains of BaTiO3 (001) are clearly observed at room temperature. Notably, the magnitude of the AMR ratio (%) for Co2FeSi Hall-bar devices can be tuned through the a - c domain wall motion of BaTiO3 (001) by applying electric fields. We propose that the tunable AMR effect is associated with the modulation of the spin-orbit interaction, exchange interaction, and/or the electronic band structure near the Fermi level by applying electric fields in the epitaxial Co2FeSi/BaTiO3 (001) interfacial multiferroic system.
引用
收藏
页数:9
相关论文
empty
未找到相关数据