The large-time behavior of the multi-dimensional hyperbolic-parabolic model arising from chemotaxis

被引:5
作者
Xu, Fuyi [1 ]
Li, Xinliang [1 ]
Wang, Chengli [2 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Shandong, Peoples R China
[2] China Inst Water Resources & Hydropower Res, Beijing 100038, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
NAVIER-STOKES EQUATIONS; OPTIMAL CONVERGENCE-RATES; REACTION-DIFFUSION EQUATIONS; GLOBAL EXISTENCE; WELL-POSEDNESS; DECAY; SYSTEM; AGGREGATION; MOTION;
D O I
10.1063/1.5120331
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The present paper is dedicated to the study of large-time behavior of global strong solutions to the initial value problem for the hyperbolic-parabolic system derived from chemotaxis models in any dimension d >= 2. Under a suitable additional decay assumption involving only the low frequencies of the data and in L-2-critical regularity framework, we exhibit the decay rates of strong solutions to the system for initial data close to a stable equilibrium state. The proof relies on a refined time-weighted energy functional in the Fourier space and the Littlewood-Paley decomposition technology. Published under license by AIP Publishing.
引用
收藏
页数:12
相关论文
共 32 条
  • [1] Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
  • [2] Chemin J-Y., 1998, Oxford Lecture Series in Mathematics and Its Applications 14
  • [3] FLOW OF NON-LIPSCHITZ VECTOR-FIELDS AND NAVIER-STOKES EQUATIONS
    CHEMIN, JY
    LERNER, N
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 121 (02) : 314 - 328
  • [4] Chen QL, 2010, COMMUN PUR APPL MATH, V63, P1173
  • [5] Density-dependent incompressible viscous fluids in critical spaces
    Danchin, R
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 : 1311 - 1334
  • [6] Danchin R., 2016, HDB MATH ANAL MECH V
  • [7] DECAY-ESTIMATES FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS IN UNBOUNDED-DOMAINS
    DECKELNICK, K
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (01) : 115 - 130
  • [8] Optimal convergence rates for the compressible Navier-Stokes equations with potential forces
    Duan, Renjun
    Ukai, Seiji
    Yang, Tong
    Zhao, Huijiang
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (05) : 737 - 758
  • [9] The Optimal Convergence Rates for the Multi-dimensional Chemotaxis Model in Critical Besov Spaces
    Guan, Xiaoyan
    Wang, Shaoli
    Lv, Ye
    Xu, Fuyi
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2016, 143 (01) : 91 - 104
  • [10] Guo J, 2009, ACTA MATH SCI, V29, P629