The large-time behavior of the multi-dimensional hyperbolic-parabolic model arising from chemotaxis

被引:5
作者
Xu, Fuyi [1 ]
Li, Xinliang [1 ]
Wang, Chengli [2 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Shandong, Peoples R China
[2] China Inst Water Resources & Hydropower Res, Beijing 100038, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
NAVIER-STOKES EQUATIONS; OPTIMAL CONVERGENCE-RATES; REACTION-DIFFUSION EQUATIONS; GLOBAL EXISTENCE; WELL-POSEDNESS; DECAY; SYSTEM; AGGREGATION; MOTION;
D O I
10.1063/1.5120331
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The present paper is dedicated to the study of large-time behavior of global strong solutions to the initial value problem for the hyperbolic-parabolic system derived from chemotaxis models in any dimension d >= 2. Under a suitable additional decay assumption involving only the low frequencies of the data and in L-2-critical regularity framework, we exhibit the decay rates of strong solutions to the system for initial data close to a stable equilibrium state. The proof relies on a refined time-weighted energy functional in the Fourier space and the Littlewood-Paley decomposition technology. Published under license by AIP Publishing.
引用
收藏
页数:12
相关论文
共 32 条
[1]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[2]  
Chemin J-Y., 1998, Oxford Lecture Series in Mathematics and Its Applications 14
[3]   FLOW OF NON-LIPSCHITZ VECTOR-FIELDS AND NAVIER-STOKES EQUATIONS [J].
CHEMIN, JY ;
LERNER, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 121 (02) :314-328
[4]  
Chen QL, 2010, COMMUN PUR APPL MATH, V63, P1173
[5]   Density-dependent incompressible viscous fluids in critical spaces [J].
Danchin, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :1311-1334
[6]  
Danchin R., 2016, HDB MATH ANAL MECH V
[7]   DECAY-ESTIMATES FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS IN UNBOUNDED-DOMAINS [J].
DECKELNICK, K .
MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (01) :115-130
[8]   Optimal convergence rates for the compressible Navier-Stokes equations with potential forces [J].
Duan, Renjun ;
Ukai, Seiji ;
Yang, Tong ;
Zhao, Huijiang .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (05) :737-758
[9]   The Optimal Convergence Rates for the Multi-dimensional Chemotaxis Model in Critical Besov Spaces [J].
Guan, Xiaoyan ;
Wang, Shaoli ;
Lv, Ye ;
Xu, Fuyi .
ACTA APPLICANDAE MATHEMATICAE, 2016, 143 (01) :91-104
[10]  
Guo J, 2009, ACTA MATH SCI, V29, P629