Meshless methods for solving Dirichlet boundary optimal control problems governed by elliptic PDEs

被引:3
作者
Guan, Hongbo [1 ]
Wang, Yong [2 ]
Zhu, Huiqing [3 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou, Henan, Peoples R China
[2] Washington Univ, Dept Obstet & Gynecol Radiol Biomed Engn, St Louis, MO 63110 USA
[3] Univ Southern Mississippi, Sch Math & Nat Sci, Hattiesburg, MS 39406 USA
基金
中国国家自然科学基金;
关键词
Boundary optimal control problems; Radial basis functions; Collocation method; Method of fundamental solution;
D O I
10.1016/j.aml.2019.06.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, two meshless schemes are proposed for solving Dirichlet boundary optimal control problems governed by elliptic equations. The first scheme uses radial basis function collocation method (RBF-CM) for both state equation and adjoint state equation, while the second scheme employs the method of fundamental solution (MFS) for the state equation when it has a zero source term, and RBF-CM for the adjoint state equation. Numerical examples are provided to validate the efficiency of the proposed schemes. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:438 / 445
页数:8
相关论文
共 18 条
[1]  
[Anonymous], 2007, MESHFREE APPROXIMATI
[2]   Controlling the Kelvin force: basic strategies and applications to magnetic drug targeting [J].
Antil, Harbir ;
Nochetto, Ricardo H. ;
Venegas, Pablo .
OPTIMIZATION AND ENGINEERING, 2018, 19 (03) :559-589
[3]   Domain decomposition and model reduction for the numerical solution of PDE constrained optimization problems with localized optimization variables [J].
Antil, Harbir ;
Heinkenschloss, Matthias ;
Hoppe, Ronald H. W. ;
Sorensen, Danny C. .
COMPUTING AND VISUALIZATION IN SCIENCE, 2010, 13 (06) :249-264
[4]   ON THE REGULARITY OF THE SOLUTIONS OF DIRICHLET OPTIMAL CONTROL PROBLEMS IN POLYGONAL DOMAINS [J].
Apel, Thomas ;
Mateos, Mariano ;
Pfefferer, Johannes ;
Roesch, Arnd .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (06) :3620-3641
[5]   Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations [J].
Casas, Eduardo ;
Raymond, Jean-Pierre .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (05) :1586-1611
[6]   On choosing the location of the sources in the MFS [J].
Chen, C. S. ;
Karageorghis, A. ;
Li, Yan .
NUMERICAL ALGORITHMS, 2016, 72 (01) :107-130
[7]  
Deuflhard P., 1997, P 15 IMACS WORLD C 1, V3, P9
[8]  
Eppler K, 2001, ONLINE OPTIMIZATION OF LARGE SCALE SYSTEMS, P185
[9]   Convergence order estimates of meshless collocation methods using radial basis functions [J].
Franke, C ;
Schaback, R .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1998, 8 (04) :381-399
[10]   A convergent adaptive finite element method for elliptic Dirichlet boundary control problems (vol 39, pg 1985, 2019) [J].
Gong, Wei ;
Liu, Wenbin ;
Tan, Zhiyu ;
Yan, Ningning .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (01) :800-800