Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries

被引:111
作者
Wang, Liguang [1 ,2 ]
Wang, Jiajun [2 ]
Zhang, Xiaoyi [3 ]
Ren, Yang [3 ]
Zuo, Pengjian [1 ]
Yin, Geping [1 ]
Wang, Jun [2 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150001, Peoples R China
[2] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Bldg 743 Ring Rd, Upton, NY 11973 USA
[3] Argonne Natl Lab, Xray Sci Div, 9700 South Cass Ave, Argonne, IL 60439 USA
基金
中国国家自然科学基金;
关键词
Irreversible capacity loss; Layered structure materials; High voltage; Synchrotron-based techniques; Sodium-ion batteries; X-RAY NANOTOMOGRAPHY; POSITIVE ELECTRODE; MONOCLINIC NANIO2; CATHODE MATERIALS; ENERGY-STORAGE; DIFFRACTION; HYSTERESIS; ABSORPTION; P2-TYPE; OXIDE;
D O I
10.1016/j.nanoen.2017.02.046
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Layered transition metal compounds have attracted much attention due to their high theoretical capacity and energy density for sodium ion batteries. However, this kind of material suffers from serious irreversible capacity decay during the charge and discharge process. Here, using synchrotron-based operando transmission X-ray microscopy and high-energy X-ray diffraction combined with electrochemical measurements, the visualization of the dissymmetric phase transformation and structure evolution mechanism of layered NaNiO2 material during initial charge and discharge cycles are clarified. Phase transformation and deformation of NaNiO2 during the voltage range of below 3.0 V and over 4.0 V are responsible for the irreversible capacity loss during the first cycling, which is also confirmed by the evolution of reaction kinetics behavior obtained by the galvanostatic intermittent titration technique. These findings reveal the origin of the irreversibility of NaNiO2 and offer valuable insight into the phase transformation mechanism, which will provide underlying guidance for further development of high-performance sodium ion batteries.
引用
收藏
页码:215 / 223
页数:9
相关论文
共 37 条
[1]   STUDY OF THE NAXCRO2 AND NAXNIO2 SYSTEMS BY ELECTROCHEMICAL DESINTERCALATION [J].
BRACONNIER, JJ ;
DELMAS, C ;
HAGENMULLER, P .
MATERIALS RESEARCH BULLETIN, 1982, 17 (08) :993-1000
[2]  
Chen H., 2011, PHYS REV B, V84
[3]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[4]   NICKEL-HYDROXIDE AND DERIVED PHASES OBTAINED BY CHIMIE-DOUCE FROM NANIO2 [J].
DELMAS, C ;
BORTHOMIEU, Y ;
FAURE, C ;
DELAHAYE, A ;
FIGLARZ, M .
SOLID STATE IONICS, 1989, 32-3 :104-111
[5]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[6]   ALKALI METAL NICKEL OXIDES OF THE TYPE MNIO2 [J].
DYER, LD ;
BORIE, BS ;
SMITH, GP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1954, 76 (06) :1499-1503
[7]   A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries [J].
Han, Man Huon ;
Gonzalo, Elena ;
Singh, Gurpreet ;
Rojo, Teofilo .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (01) :81-102
[8]   Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process [J].
Huon Han, Man ;
Gonzalo, Elena ;
Casas-Cabanas, Montse ;
Rojo, Teofilo .
JOURNAL OF POWER SOURCES, 2014, 258 :266-271
[9]   Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries [J].
Hwang, Jang-Yeon ;
Oh, Seung-Min ;
Myung, Seung-Taek ;
Chung, Kyung Yoon ;
Belharouak, Ilias ;
Sun, Yang-Kook .
NATURE COMMUNICATIONS, 2015, 6
[10]   XAS investigation of inhomogeneous metal-oxygen bond covalency in bulk and surface for charge compensation in li-ion battery cathode Li[Ni1/3Co1/3Mn1/3]O2 material [J].
Kim, MG ;
Shin, HJ ;
Kim, JH ;
Park, SH ;
Sun, YK .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (07) :A1320-A1328