Two-step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode

被引:152
作者
Xiong, Chuanyin [1 ]
Li, Tiehu [1 ]
Dang, Alei [1 ]
Zhao, Tingkai [1 ]
Li, Hao [1 ]
Lv, Huiqin [1 ]
机构
[1] Northwestern Polytech Univ, Sch Mat Sci & Engn, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Three-dimensional; Electrochemical deposition; Chemical vapor deposition; MnO2-Graphene-carbon nanotube; Supercapacitor; CHEMICAL-VAPOR-DEPOSITION; CARBON NANOTUBES; MANGANESE OXIDE; GRAPHITE OXIDE; GRAPHENE; PERFORMANCE; COMPOSITES; NETWORKS; ROUTE; MNO2;
D O I
10.1016/j.jpowsour.2015.12.056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper describes the fabrication and characterization of a three-dimensional (3D) MnO2-graphene (GR)-CNT hybrid obtained by combining electrochemical deposition (ELD)-electrophoretic deposition (EPD) and chemical vapor deposition (CVD). Firstly, 3D MnO2-graphene oxide (GO) is fabricated via ELD-EPD. Secondly, the catalyst and xylene are mixed with solution of certain concentration. Thirdly, catalyst is loaded on the surface of MnO2-GO when the solution is sprayed into the furnace. Forth, MnO2-GO is restored to MnO2-GR at high temperature, meanwhile, MnO2-GR is served as a substrate to grow CNT, which is beneficial to provide high speed channel for carrier and obtain pseudocapacitance of MnO2. The as-prepared hybrid is characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray Diffraction (XRD) and Raman spectroscopy (Raman), and their supercapacitor properties are also investigated. The results show that a high specific capacitance of 330.75 F g(-1) and high energy density of 36.68 Wh kg(-1) while maintaining high power density of 8000 W kg(-1) at a scan rate of 200 mV s(-1). Furthermore, the hybrid displays a high specific capacitance of 187.53 F g(-1) at ultrahigh scan rate of 400 mV s(-1). These attractive results demonstrate that the hybrid is a promising electrode material for high performance supercapacitors. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:602 / 610
页数:9
相关论文
共 44 条
[1]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[2]   Low Temperature Growth of Vertically Aligned Carbon Nanotubes via Floating Catalyst Chemical Vapor Deposition Method [J].
Atiyah, M. R. ;
Biak, D. R. Awang ;
Ahmadun, F. ;
Ahamad, I. S. ;
Yasin, F. Mohd ;
Yusoff, H. Mohamed .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2011, 27 (04) :296-300
[3]   Effect of electrodeposition conditions on the electrochemical capacitive behavior of synthesized manganese oxide electrodes [J].
Babakhani, Banafsheh ;
Ivey, Douglas G. .
JOURNAL OF POWER SOURCES, 2011, 196 (24) :10762-10774
[4]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[5]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[6]   GRAPHITE - THE ULTIMATE LARGE AROMATIC MOLECULE [J].
CAMPBELL, SJ ;
KELLY, DC ;
PEACOCK, TE .
AUSTRALIAN JOURNAL OF CHEMISTRY, 1989, 42 (04) :479-488
[7]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[8]   High-Performance Nanostructured Supercapacitors on a Sponge [J].
Chen, Wei ;
Rakhi, R. B. ;
Hu, Liangbing ;
Xie, Xing ;
Cui, Yi ;
Alshareef, H. N. .
NANO LETTERS, 2011, 11 (12) :5165-5172
[9]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[10]   Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors [J].
Cheng, Yingwen ;
Lu, Songtao ;
Zhang, Hongbo ;
Varanasi, Chakrapani V. ;
Liu, Jie .
NANO LETTERS, 2012, 12 (08) :4206-4211