Structure preserving parallel algorithms for solving the Bethe-Salpeter eigenvalue problem

被引:39
作者
Shao, Meiyue [1 ]
da Jornada, Felipe H. [2 ,3 ]
Yang, Chao [1 ]
Deslippe, Jack [4 ]
Louie, Steven G. [2 ,3 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, NERSC, Berkeley, CA 94720 USA
关键词
Bethe-Salpeter equation; Tamm-Dancoff approximation; Hamiltonian eigenvalue problems; Structure preserving algorithms; Parallel algorithms; MINIMIZATION PRINCIPLES; IMPLEMENTATION; SOFTWARE;
D O I
10.1016/j.laa.2015.09.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Bethe-Salpeter eigenvalue problem is a dense structured eigenvalue problem arising from discretized Bethe-Salpeter equation in the context of computing exciton energies and states. A computational challenge is that at least half of the eigenvalues and the associated eigenvectors are desired in practice. We establish the equivalence between Bethe-Salpeter eigenvalue problems and real Hamiltonian eigenvalue problems. Based on theoretical analysis, structure preserving algorithms for a class of Bethe-Salpeter eigenvalue problems are proposed. We also show that for this class of problems all eigenvalues obtained from the Tamm-Dancoff approximation are overestimated. In order to solve large scale problems of practical interest, we discuss parallel implementations of our algorithms targeting distributed memory systems. Several numerical examples are presented to demonstrate the efficiency and accuracy of our algorithms. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:148 / 167
页数:20
相关论文
共 35 条
[1]  
ANDERSON E., 1999, LAPACK USERSGUIDE, V3rd
[2]  
[Anonymous], 2003, ELECTRON J LINEAR AL, DOI DOI 10.13001/1081-3810.1101
[3]  
[Anonymous], MPIMD1512
[4]  
[Anonymous], 1945, Journal of Physics (Moscow), DOI DOI 10.1007/978-3-642-74626-0_12
[5]   MINIMIZATION PRINCIPLES FOR THE LINEAR RESPONSE EIGENVALUE PROBLEM II: COMPUTATION [J].
Bai, Zhaojun ;
Li, Ren-Cang .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (02) :392-416
[6]   MINIMIZATION PRINCIPLES FOR THE LINEAR RESPONSE EIGENVALUE PROBLEM I: THEORY [J].
Bai, Zhaojun ;
Li, Ren-Cang .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2012, 33 (04) :1075-1100
[7]   Skew-Hamiltonian and Hamiltonian eigenvalue problems: Theory, algorithms and applications [J].
Benner, P ;
Kressner, D ;
Mehrmann, V .
PROCEEDINGS OF THE CONFERENCE ON APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING, 2005, :3-39
[8]   Notes on matrix arithmetic-geometric mean inequalities [J].
Bhatia, R ;
Kittaneh, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 308 (1-3) :203-211
[9]   Algorithm 807. The SBR toolbox-software for successive band reduction [J].
Bischof, CH ;
Lang, B ;
Sun, XB .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2000, 26 (04) :602-616
[10]  
Blackford L., 1997, ScaLAPACK Users Guide