A Cobalt-Modified Covalent Triazine-Based Framework as an Efficient Cocatalyst for Visible-Light-Driven Photocatalytic CO2 Reduction

被引:58
作者
Bi, Jinhong [1 ,2 ]
Xu, Bin [1 ]
Sun, Long [1 ]
Huang, Huimin [1 ]
Fang, Shengqiong [1 ]
Li, Liuyi [3 ]
Wu, Ling [2 ]
机构
[1] Fuzhou Univ, Dept Environm Sci & Engn, Minhou 350108, Fujian, Peoples R China
[2] Fuzhou Univ, State Key Lab Photocatalysis Energy & Environm, Minhou 350108, Fujian, Peoples R China
[3] Fuzhou Univ, Key Lab Ecomat Adv Technol, Minhou 350108, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon dioxide; cobalt; covalent organic frameworks; photocatalysis; reduction; CARBON NITRIDE FRAMEWORKS; ORGANIC FRAMEWORK; HYDROGEN EVOLUTION; FACILE SYNTHESIS; H2O; NANOSHEETS; TIO2; HETEROJUNCTIONS; PHOTOREDUCTION; CONSTRUCTION;
D O I
10.1002/cplu.201900329
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photocatalytic CO2 reduction into carbonaceous feedstock chemicals is a promising renewable energy technology to convert solar energy and greenhouse gases into chemical fuels. Here, a covalent triazine-based framework (CTF) is demonstrated as an efficient cocatalyst to reduce CO2 under visible-light irradiation. The nitrogen-rich triazine moieties in CTF contribute to CO2 adsorption, while the periodical pore structure of CTF favors the accommodation of CO2 and electron mediator. Immobilization of cobalt species onto CTF promotes the photocatalytic activity with a 44-fold enhancement over pristine CTF and the optimal CO production rate of the obtained Co/CTFs was up to 50 mu mol g(-1) h(-1). The results of solid-state UV-vis diffuse reflectance spectra (UV-vis DRS), CO2 adsorption and electrochemical impedance spectroscopy (EIS) illustrated that the increased activity was ascribed to the enhanced CO2 capture capacity, improved absorption of visible-light and facilitated the transfer of charge from CTF to CO2 molecules. The CTF not only serves as a substrate for active Co species, but also bridges the photosensitizer with cobalt catalytic sites for the efficient transfer of photoexcited electrons. This work highlights the capability and ease of fabricating covalent organic framework-based photocatalytic systems that are potentially useful for energy-conversion applications.
引用
收藏
页码:1149 / 1154
页数:6
相关论文
共 58 条
[1]  
[Anonymous], 2014, ANGEW CHEM
[2]  
[Anonymous], 2008, Angew. Chem., DOI DOI 10.1002/ANGE.200705710
[3]   Covalent Triazine-Based Frameworks as Visible Light Photocatalysts for the Splitting of Water [J].
Bi, Jinhong ;
Fang, Wei ;
Li, Liuyi ;
Wang, Jinyun ;
Liang, Shijing ;
He, Yunhui ;
Liu, Minghua ;
Wu, Ling .
MACROMOLECULAR RAPID COMMUNICATIONS, 2015, 36 (20) :1799-1805
[4]   Enhanced Photocatalytic Hydrogen Evolution of NiCoP/g-C3N4 with Improved Separation Efficiency and Charge Transfer Efficiency [J].
Bi, Lingling ;
Gao, Xupeng ;
Zhang, Lijing ;
Wang, Dejun ;
Zou, Xiaoxin ;
Xie, Tengfeng .
CHEMSUSCHEM, 2018, 11 (01) :276-284
[5]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Grosvenor, Andrew P. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2011, 257 (07) :2717-2730
[6]   Porous organic polymers as emerging new materials for organic photovoltaic applications: current status and future challenges [J].
Bildirir, Hakan ;
Gregoriou, Vasilis G. ;
Avgeropoulos, Apostolos ;
Scherfd, Ullrich ;
Chochos, Christos L. .
MATERIALS HORIZONS, 2017, 4 (04) :546-556
[7]   Polymeric Photocatalysts Based on Graphitic Carbon Nitride [J].
Cao, Shaowen ;
Low, Jingxiang ;
Yu, Jiaguo ;
Jaroniec, Mietek .
ADVANCED MATERIALS, 2015, 27 (13) :2150-2176
[8]   Design and synthesis of covalent organic frameworks towards energy and environment fields [J].
Cao, Shuai ;
Li, Bing ;
Zhu, Rongmei ;
Pang, Huan .
CHEMICAL ENGINEERING JOURNAL, 2019, 355 :602-623
[9]   Synergetic Integration of Cu1.94S-ZnxCd1-xS Heteronanorods for Enhanced Visible-Light-Driven Photocatalytic Hydrogen Production [J].
Chen, Yueguang ;
Zhao, Shu ;
Wang, Xian ;
Peng, Qing ;
Lin, Rui ;
Wang, Yu ;
Shen, Rongan ;
Cao, Xing ;
Zhang, Libo ;
Zhou, Gang ;
Li, Jun ;
Xia, Andong ;
Li, Yadong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (13) :4286-4289
[10]   Catalysis and photocatalysis by metal organic frameworks [J].
Dhakshinamoorthy, Amarajothi ;
Li, Zhaohui ;
Garcia, Hermenegildo .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (22) :8134-8172