Direct conversion of ester bond-rich waste plastics into hard carbon for high-performance sodium storage

被引:64
作者
Chen, Dequan [1 ]
Luo, Kangying [1 ]
Yang, Zhiwei [1 ]
Zhong, Yanjun [1 ]
Wu, Zhenguo [1 ]
Song, Yang [1 ]
Chen, Guang [2 ]
Wang, Gongke [3 ]
Zhong, Benhe [1 ]
Guo, Xiaodong [1 ]
机构
[1] Sichuan Univ, Coll Chem Engn, Chengdu, Peoples R China
[2] Shandong Normal Univ, Collaborat Innovat Ctr Functionalized Probes Chem, Key Lab Mol & Nano Probes,Minist Educ, Coll Chem Chem Engn & Mat Sci,Inst Biomed Sci, Jinan 250014, Peoples R China
[3] Henan Normal Univ, Sch Mat Sci & Engn, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion batteries; Waste plastics; Hard carbon; Anode materials; ETHER-BASED ELECTROLYTE; ION STORAGE; ANODE MATERIAL; BATTERIES; MECHANISM; INSIGHTS; CELL;
D O I
10.1016/j.carbon.2020.11.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Disordered hard carbon (HC) has shown potential as the most promising anode materials for sodium-ion batteries (SIBS). Pyrolyzing waste plastics is a sustainable alternative to obtain HC. However, most plastics will completely decompose without carbon residue or transform into highly graphitic carbon during the carbonation process because of lacking oxygen functional groups. Hence, ester bond-rich waste engineering plastics, polycarbonate (PC), and polyethylene terephthalate (PET) were selected and directly converted into HC by a simple pyrolysis method. The PC and PET-derived carbon anodes (PC-HC and PET-HC) exhibit high reversible capacities of 327 and 342 mAh.g(-1) at 20 mA.g(-1) with remarkable initial coulombic efficiency (ICE) of 84.7% and 86.1%, respectively. Particularly, the carbon samples have no severe capacities decay after 140 cycles at 100 mA.g(-1). This work provides a cost-effective, easily large-scale, and eco-friendly route to fabricate HC anodes for grid-scale energy storage. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:253 / 261
页数:9
相关论文
共 51 条
[1]   Extended plateau capacity of phosphorus-doped hard carbon used as an anode in Na- and K-ion batteries [J].
Alvin, Stevanus ;
Chandra, Christian ;
Kim, Jaehoon .
CHEMICAL ENGINEERING JOURNAL, 2020, 391
[2]   Revealing sodium ion storage mechanism in hard carbon [J].
Alvin, Stevanus ;
Yoon, Dohyeon ;
Chandra, Christian ;
Cahyadi, Handi Setiadi ;
Park, Jae-Ho ;
Chang, Wonyoung ;
Chung, Kyung Yoon ;
Kim, Jaehoon .
CARBON, 2019, 145 :67-81
[3]   Structural analysis of PVC and PFA carbons prepared at 500-1000 °C based on elemental composition, XRD, and HRTEM [J].
Aso, H ;
Matsuoka, K ;
Sharma, A ;
Tomita, A .
CARBON, 2004, 42 (14) :2963-2973
[4]  
Au H., 2020, ENERGY ENV SCI
[5]   Elucidation of the Sodium-Storage Mechanism in Hard Carbons [J].
Bai, Panxing ;
He, Yongwu ;
Zou, Xiaoxi ;
Zhao, Xinxin ;
Xiong, Peixun ;
Xu, Yunhua .
ADVANCED ENERGY MATERIALS, 2018, 8 (15)
[6]   Unveiling pseudocapacitive behavior of hard carbon anode materials for sodium-ion batteries [J].
Bobyleva, Zoia V. ;
Drozhzhin, Oleg A. ;
Dosaev, Kirill A. ;
Kamiyama, Azusa ;
Ryazantsev, Sergey V. ;
Komaba, Shinichi ;
Antipov, Evgeny V. .
ELECTROCHIMICA ACTA, 2020, 354
[7]   New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon [J].
Bommier, Clement ;
Surta, Todd Wesley ;
Dolgos, Michelle ;
Ji, Xiulei .
NANO LETTERS, 2015, 15 (09) :5888-5892
[8]   Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance [J].
Cai, Peng ;
Zou, Kangyu ;
Zou, Guoqiang ;
Hou, Hongshuai ;
Ji, Xiaobo .
NANOSCALE, 2020, 12 (06) :3677-3685
[9]   A MECHANISM FOR FLAME RETARDATION OF POLY(ETHYLENE-TEREPHTHALATE) [J].
CHANG, PH ;
WILKIE, CA .
JOURNAL OF APPLIED POLYMER SCIENCE, 1989, 38 (12) :2245-2252
[10]   Carbonization: A feasible route for reutilization of plastic wastes [J].
Chen, Shuiliang ;
Liu, Zheng ;
Jiang, Shaohua ;
Hou, Haoqing .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 710