[r, s, t]-Colorings of graphs

被引:30
作者
Kemnitz, Arnfried [1 ]
Marangio, Massimiliano [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, D-38106 Braunschweig, Germany
关键词
chromatic number; chromatic index; total chromatic number;
D O I
10.1016/j.disc.2006.06.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given non-negative integers r, s, and t, an [r, s, t]-coloring of a graph G = (V(G), E(G)) is a mapping c from V(G) U E(G) to the color set {0, 1,..., k - 1} such that vertical bar c(v(i)) - c(v(j))vertical bar >= r for every two adjacent vertices v(i), v(j), vertical bar c(e(i)) - c(e(j))vertical bar >= s for every two adjacent edges e(i), e(j), and vertical bar c(v(i)) - c(e(j))vertical bar >= t for all pairs of incident vertices and edges, respectively. The [r, s, t]-chromatic number X,,t (G) of G is defined to be the minimum k such that G admits an [r, s, t]-coloring. This is an obvious generalization of all classical graph colorings since c is a vertex coloring if r = 1, s = t = 0, an edge coloring if s = 1, r = t = 0, and a total coloring if r = s = t = 1, respectively. We present first results on chi(r.s,t)(G) such as general bounds and also exact values, for example if min{r, s, t] = 0 or if G is a complete graph. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 207
页数:9
相关论文
共 11 条
[1]  
Behzad M., 1965, THESIS MICHIGAN STAT
[2]  
BORODIN OV, 1989, J REINE ANGEW MATH, V394, P180
[3]   On colouring the nodes of a network [J].
Brooks, RL .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1941, 37 :194-197
[4]   THE TOTAL CHROMATIC NUMBER OF GRAPHS HAVING LARGE MAXIMUM DEGREE [J].
HILTON, AJW ;
HIND, HR .
DISCRETE MATHEMATICS, 1993, 117 (1-3) :127-140
[5]  
Jensen T. R., 1995, Graph Coloring Problems
[6]   The total chromatic number of any multigraph with maximum degree five is at most seven [J].
Kostochka, AV .
DISCRETE MATHEMATICS, 1996, 162 (1-3) :199-214
[7]   A bound on the total chromatic number [J].
Molloy, M ;
Reed, B .
COMBINATORICA, 1998, 18 (02) :241-280
[8]  
Sanders DP, 1999, J GRAPH THEOR, V31, P67, DOI 10.1002/(SICI)1097-0118(199905)31:1<67::AID-JGT6>3.3.CO
[9]  
2-3
[10]  
Vizing V. G., 1964, Metody Diskretnogo Analiza, V3, P25, DOI 10.1515/crll.1964.216.25