ON THE ATOMIC AND MOLECULAR DECOMPOSITION OF WEIGHTED HARDY SPACES

被引:5
作者
Rocha, Pablo [1 ]
机构
[1] Univ Nacl Sur UNS, Inst Matemat INMABB, Dept Matemat, CONICET, Bahia Blanca, Buenos Aires, Argentina
来源
REVISTA DE LA UNION MATEMATICA ARGENTINA | 2020年 / 61卷 / 02期
关键词
Weighted Hardy spaces; Singular integrals; Fractional operators; NORM INEQUALITIES; HP; BOUNDEDNESS; OPERATORS;
D O I
10.33044/revuma.v61n2a03
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this article is to give another molecular decomposition for members of weighted Hardy spaces, different from that given by Lee and Lin [J. Funct. Anal. 188 (2002), no. 2, 442-460], and to review some overlooked details. As an application of this decomposition, we obtain the boundedness on H-w(p) (R-n) of every bounded linear operator on some L-p0 (R-n) with 1 < p(0) < +infinity, for all weights w is an element of A(infinity) and all 0 < p <= 1 if 1 < r(w)-1/r(w) p(0), or all 0 < p < r(w)-1/r(w) p(0) if r(w)-1/r(w) p(0) <= 1, where r(w) is the critical index of w for the reverse Holder condition. In particular, the well-known results about boundedness of singular integrals from H-w(p) (R-n) into L-w(p) (R-n) and on H-w(p) (R-n) for all w is an element of A(infinity) and all 0 < p <= 1 are established. We also obtain the H-w(p) (R-n)-H-w(q) (R-n) boundedness of the Riesz potential I-alpha for 0 < p <= 1, 1/q = 1/p - alpha/n, and certain weights w.
引用
收藏
页码:229 / 247
页数:19
相关论文
共 21 条
[1]   Boundedness of operators on Hardy spaces via atomic decompositions [J].
Bownik, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) :3535-3542
[2]  
COIFMAN RR, 1974, STUD MATH, V51, P269
[3]   THE BOUNDEDNESS OF MULTILINEAR CALDERON-ZYGMUND OPERATORS ON WEIGHTED AND VARIABLE HARDY SPACES [J].
Cruz-Uribe, David ;
Moen, Kabe ;
Hanh Van Nguyen .
PUBLICACIONS MATEMATIQUES, 2019, 63 (02) :679-713
[4]  
FEFFERMAN C, 1972, ACTA MATH-UPPSALA, V129, P137, DOI 10.1007/BF02392215
[5]  
Garcia-Cuerva J., 1979, Dissertationes Math., V162, P1
[6]  
Grafakos L, 2014, GRAD TEXTS MATH, V250, DOI 10.1007/978-1-4939-1230-8
[7]   FRACTIONAL-INTEGRATION ON HARDY-SPACES [J].
KRANTZ, SG .
STUDIA MATHEMATICA, 1982, 73 (02) :87-94
[8]  
LATTER RH, 1978, STUD MATH, V62, P93, DOI 10.4064/sm-62-1-93-101
[9]   The molecular characterization of weighted Hardy spaces [J].
Lee, MY ;
Lin, CC .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 188 (02) :442-460
[10]   The molecular characterization of weighted Hardy spaces [J].
Li, XM ;
Peng, LZ .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 (02) :201-211