Machine learning prediction of glass-forming ability in bulk metallic glasses

被引:45
作者
Xiong, Jie [2 ,3 ]
Shi, San-Qiang [2 ,3 ]
Zhang, Tong-Yi [1 ,4 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Shenzhen, Peoples R China
[2] Hong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen, Peoples R China
[4] Shanghai Univ, Mat Genome Inst, Shanghai, Peoples R China
关键词
Machine learning; XGBoost; Glass-forming ability; Bulk metallic glasses; ELASTIC PROPERTIES; CRITERION; ALLOYS;
D O I
10.1016/j.commatsci.2021.110362
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The critical casting diameter (Dmax) quantitatively represents glass-forming ability (GFA) of bulk metallic glasses (BMGs). The present work constructed a dataset of two subsets, L-GFA subset of 376 BMGs with 1 mm ?Dmax < 5 mm and G-GFA subset of 319 BMGs with Dmax ? 5 mm. The sequential backward selector and exhaustive feature selector are introduced to select key features. The trained XGBoost classifier with four selected features is able to successfully classify the L-GFA and G-GFA BMGs. Furthermore, the trained XGBoost regression model with another four selected features predicts the Dmax of G-GFA samples with a cross-validated correlation coefficient of 0.8012. The correlation between features and Dmax will provide the guidance in the design and discovery of novel
引用
收藏
页数:6
相关论文
共 28 条
[1]   A survey of cross-validation procedures for model selection [J].
Arlot, Sylvain ;
Celisse, Alain .
STATISTICS SURVEYS, 2010, 4 :40-79
[2]   Melting enthalpy ΔHm for describing glass forming ability of bulk metallic glasses [J].
Cai, An-Hui ;
Chen, Hua ;
An, Wei-Ke ;
Tan, Jing-Ying ;
Zhou, Yong ;
Pan, Ye ;
Sun, Guo-Xiong .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2008, 354 (15-16) :1808-1816
[3]   A new criterion for evaluating the glass-forming ability of bulk metallic glasses [J].
Chen, Qingjun ;
Shen, Jun ;
Zhang, Deliang ;
Fan, Hongbo ;
Sun, Jianfei ;
McCartney, D. G. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 433 (1-2) :155-160
[4]   A new criterion for predicting glass forming ability of bulk metallic glasses and some critical discussions [J].
Dong, Bang-shao ;
Zhou, Shao-xiong ;
Li, De-ren ;
Lu, Cao-wei ;
Guo, Feng ;
Ni, Xiao-jun ;
Lu, Zhi-chao .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2011, 21 (02) :164-172
[5]   New criterion in predicting glass forming ability of various glass-forming systems [J].
Du, X. H. ;
Huang, J. C. .
CHINESE PHYSICS B, 2008, 17 (01) :249-254
[6]   Review on the Research and Development of Ti-Based Bulk Metallic Glasses [J].
Gong, Pan ;
Deng, Lei ;
Jin, Junsong ;
Wang, Sibo ;
Wang, Xinyun ;
Yao, Kefu .
METALS, 2016, 6 (11)
[7]  
Greer A.L., 2014, Physical Metallurgy, VFifth, P305, DOI 10.1016/B978-0-444-53770-6.00004-6
[8]   THERMODYNAMIC DRIVING FORCE IN NUCLEATION AND GROWTH PROCESSES [J].
HOFFMAN, JD .
JOURNAL OF CHEMICAL PHYSICS, 1958, 29 (05) :1192-1193
[9]  
Hosmer D.W., 2000, Applied Logistic Regression, DOI DOI 10.1002/0471722146
[10]   Stabilization of metallic supercooled liquid and bulk amorphous alloys [J].
Inoue, A .
ACTA MATERIALIA, 2000, 48 (01) :279-306