Novel deep learning model for more accurate prediction of drug-drug interaction effects

被引:98
作者
Lee, Geonhee [1 ]
Park, Chihyun [2 ]
Ahn, Jaegyoon [1 ]
机构
[1] Incheon Natl Univ, Dept Comp Sci & Engn, Incheon 22012, South Korea
[2] Yonsei Univ, Dept Comp Sci, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
Drug-drug interaction; Deep learning; Autoencoder; Similarity profile; GENE ONTOLOGY;
D O I
10.1186/s12859-019-3013-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or in vitro, but room remains for improvement in prediction performance. Results In this study, we propose a novel deep learning model to predict the effect of DDIs more accurately.. The proposed model uses autoencoders and a deep feed-forward network that are trained using the structural similarity profiles (SSP), Gene Ontology (GO) term similarity profiles (GSP), and target gene similarity profiles (TSP) of known drug pairs to predict the pharmacological effects of DDIs. The results show that GSP and TSP increase the prediction accuracy when using SSP alone, and the autoencoder is more effective than PCA for reducing the dimensions of each profile. Our model showed better performance than the existing methods, and identified a number of novel DDIs that are supported by medical databases or existing research. Conclusions We present a novel deep learning model for more accurate prediction of DDIs and their effects, which may assist in future research to discover novel DDIs and their pharmacological effects.
引用
收藏
页数:8
相关论文
共 27 条
[1]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[2]   Expansion of the Gene Ontology knowledgebase and resources [J].
Carbon, S. ;
Dietze, H. ;
Lewis, S. E. ;
Mungall, C. J. ;
Munoz-Torres, M. C. ;
Basu, S. ;
Chisholm, R. L. ;
Dodson, R. J. ;
Fey, P. ;
Thomas, P. D. ;
Mi, H. ;
Muruganujan, A. ;
Huang, X. ;
Poudel, S. ;
Hu, J. C. ;
Aleksander, S. A. ;
McIntosh, B. K. ;
Renfro, D. P. ;
Siegele, D. A. ;
Antonazzo, G. ;
Attrill, H. ;
Brown, N. H. ;
Marygold, S. J. ;
McQuilton, P. ;
Ponting, L. ;
Millburn, G. H. ;
Rey, A. J. ;
Stefancsik, R. ;
Tweedie, S. ;
Falls, K. ;
Schroeder, A. J. ;
Courtot, M. ;
Osumi-Sutherland, D. ;
Parkinson, H. ;
Roncaglia, P. ;
Lovering, R. C. ;
Foulger, R. E. ;
Huntley, R. P. ;
Denny, P. ;
Campbell, N. H. ;
Kramarz, B. ;
Patel, S. ;
Buxton, J. L. ;
Umrao, Z. ;
Deng, A. T. ;
Alrohaif, H. ;
Mitchell, K. ;
Ratnaraj, F. ;
Omer, W. ;
Rodriguez-Lopez, M. .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D331-D338
[3]   The BioGRID interaction database: 2017 update [J].
Chatr-aryamontri, Andrew ;
Oughtred, Rose ;
Boucher, Lorrie ;
Rust, Jennifer ;
Chang, Christie ;
Kolas, Nadine K. ;
O'Donnell, Lara ;
Oster, Sara ;
Theesfeld, Chandra ;
Sellam, Adnane ;
Stark, Chris ;
Breitkreutz, Bobby-Joe ;
Dolinski, Kara ;
Tyers, Mike .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D369-D379
[4]   Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties [J].
Cheng, Feixiong ;
Zhao, Zhongming .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2014, 21 (E2) :E278-E286
[5]   Prevention of Torsade de Pointes in Hospital Settings A Scientific Statement From the American Heart Association and the American College of Cardiology Foundation [J].
Drew, Barbara J. ;
Ackerman, Michael J. ;
Funk, Marjorie ;
Gibler, W. Brian ;
Kligfield, Paul ;
Menon, Venu ;
Philippides, George J. ;
Roden, Dan M. ;
Zareba, Wojciech .
CIRCULATION, 2010, 121 (08) :1047-1060
[6]   Changes in QTc Interval in the Citalopram for Agitation in Alzheimer's Disease (CitAD) Randomized Trial [J].
Drye, Lea T. ;
Spragg, David ;
Devanand, D. P. ;
Frangakis, Constantine ;
Marano, Christopher ;
Meinert, Curtis L. ;
Mintzer, Jacobo E. ;
Munro, Cynthia A. ;
Pelton, Gregory ;
Pollock, Bruce G. ;
Porsteinsson, Anton P. ;
Rabins, Peter V. ;
Rosenberg, Paul B. ;
Schneider, Lon S. ;
Shade, David M. ;
Weintraub, Daniel ;
Yesavage, Jerome ;
Lyketsos, Constantine G. .
PLOS ONE, 2014, 9 (06)
[7]   Adverse drug reactions: definitions, diagnosis, and management [J].
Edwards, IR ;
Aronson, JK .
LANCET, 2000, 356 (9237) :1255-1259
[8]   Experimental design and statistical analysis for three-drug combination studies [J].
Fang, Hong-Bin ;
Chen, Xuerong ;
Pei, Xin-Yan ;
Grant, Steven ;
Tan, Ming .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (03) :1261-1280
[9]   Analysis of drug combinations: current methodological landscape [J].
Foucquier, Julie ;
Guedj, Mickael .
PHARMACOLOGY RESEARCH & PERSPECTIVES, 2015, 3 (03)
[10]   High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response [J].
Gao, Hui ;
Korn, Joshua M. ;
Ferretti, Stephane ;
Monahan, John E. ;
Wang, Youzhen ;
Singh, Mallika ;
Zhang, Chao ;
Schnell, Christian ;
Yang, Guizhi ;
Zhang, Yun ;
Balbin, O. Alejandro ;
Barbe, Stephanie ;
Cai, Hongbo ;
Casey, Fergal ;
Chatterjee, Susmita ;
Chiang, Derek Y. ;
Chuai, Shannon ;
Cogan, Shawn M. ;
Collins, Scott D. ;
Dammassa, Ernesta ;
Ebel, Nicolas ;
Embry, Millicent ;
Green, John ;
Kauffmann, Audrey ;
Kowa, Colleen ;
Leary, Rebecca J. ;
Lehar, Joseph ;
Liang, Ying ;
Loo, Alice ;
Lorenzana, Edward ;
McDonald, E. Robert, III ;
McLaughlin, Margaret E. ;
Merkin, Jason ;
Meyer, Ronald ;
Naylor, Tara L. ;
Patawaran, Montesa ;
Reddy, Anupama ;
Roeelli, Claudia ;
Ruddy, David A. ;
Salangsang, Fernando ;
Santacroce, Francesca ;
Singh, Angad P. ;
Tang, Yan ;
Tinetto, Walter ;
Tobler, Sonja ;
Velazquez, Roberto ;
Venkatesan, Kavitha ;
Von Arx, Fabian ;
Wang, Hui Qin ;
Wang, Zongyao .
NATURE MEDICINE, 2015, 21 (11) :1318-1325