INVARIANCE OF THE COEFFICIENTS OF STRONGLY CONVEX FUNCTIONS

被引:12
作者
Thomas, D. K. [1 ]
Verma, Sarika [2 ]
机构
[1] Swansea Univ, Dept Math, Singleton Pk, Swansea SA2 8PP, W Glam, Wales
[2] DAV Univ, Dept Math, Jalandhar 144012, Punjab, India
关键词
univalent functions; invariance; inverse coefficients; strongly starlike and convex functions; Hankel determinant; logarithmic coefficients; Fekete-Szego;
D O I
10.1017/S0004972716000976
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let the function f be analytic in D = {z : vertical bar z vertical bar < 1} and given by f (z) = z + Sigma(infinity)(n=2) a(n)Z(n). For 0 < beta <= 1, denote by C(beta) the class of strongly convex functions. We give sharp bounds for the initial coefficients of the inverse function of f is an element of C(beta), showing that these estimates are the same as those for functions in C(beta), thus extending a classical result for convex functions. We also give invariance results for the second Hankel determinant H-2 = vertical bar a(2)a(4) - a(3)(2)vertical bar, the first three coefficients of log(f(z)/z) and Fekete-Szego theorems.
引用
收藏
页码:436 / 445
页数:10
相关论文
共 9 条
[1]  
Ali R. M., 1996, RESULTS MATH, V29, P197
[2]  
Ali R. M., 2003, Bull. Malays. Math. Sci. Soc, V26, P63
[3]   COEFFICIENT ESTIMATES FOR A CLASS OF STAR-LIKE FUNCTIONS [J].
BRANNAN, DA ;
CLUNIE, J ;
KIRWAN, WE .
CANADIAN JOURNAL OF MATHEMATICS, 1970, 22 (03) :476-&
[4]  
HAYMAN WK, 1968, P LOND MATH SOC, V18, P77
[5]  
Janteng S.A., 2007, Int. J.Math.Anal., V1, P619
[6]   COEFFICIENT BOUNDS FOR THE INVERSE OF A FUNCTION WITH DERIVATIVE IN P [J].
LIBERA, RJ ;
ZLOTKIEWICZ, EJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (02) :251-257
[7]   Analysis on simple conformable illustrations of unit circles I [J].
Lowner, K .
MATHEMATISCHE ANNALEN, 1923, 89 :103-121
[8]   2ND HANKEL DETERMINANT OF AREALLY MEAN P-VALENT FUNCTIONS [J].
NOONAN, JW ;
THOMAS, DK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 223 (OCT) :337-346
[9]   ON HANKEL DETERMINANTS OF UNIVALENT FUNCTIONS [J].
POMMERENKE, C .
MATHEMATIKA, 1967, 14 (27P1) :108-+