An Ensemble Kushner-Stratonovich-Poisson Filter for Recursive Estimation in Nonlinear Dynamical Systems

被引:3
|
作者
Venugopal, Mamatha [1 ]
Vasu, Ram Mohan [1 ]
Roy, Debasish [2 ]
机构
[1] Indian Inst Sci, Dept Instrumentat & Appl Phys, Opt Tomog Lab, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Dept Civil Engn, Computat Mech Lab, Bangalore 560012, Karnataka, India
关键词
Automatic control; Bayes method; filtering; Monte Carlo methods; Poisson processes; recursive estimation; MONTE-CARLO METHODS; PARTICLE;
D O I
10.1109/TAC.2015.2450113
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a Monte Carlo filter for recursive estimation of diffusive processes that modulate the instantaneous rates of Poisson measurements. A key aspect is the additive update, through a gain-like correction term, empirically approximated from the innovation integral in the time-discretized Kushner-Stratonovich equation. The additive filter-update scheme eliminates the problem of particle collapse encountered in many conventional particle filters. Through a few numerical demonstrations, the versatility of the proposed filter is brought forth.
引用
收藏
页码:823 / 828
页数:6
相关论文
共 50 条
  • [1] A Kushner-Stratonovich Monte Carlo filter applied to nonlinear dynamical system identification
    Sarkar, S.
    Chowdhury, S. R.
    Venugopal, M.
    Vasu, R. M.
    Roy, D.
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 270 : 46 - 59
  • [2] Recursive estimation in constrained nonlinear dynamical systems
    Vachhani, P
    Rengaswamy, R
    Gangwal, V
    Narasimhan, S
    AICHE JOURNAL, 2005, 51 (03) : 946 - 959
  • [3] Learning augmented recursive estimation for uncertain nonlinear dynamical systems
    Draper, SC
    Mangoubi, RS
    Baker, WL
    PROCEEDINGS OF THE 1996 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 1996, : 438 - 443
  • [4] An ensemble score filter for tracking high-dimensional nonlinear dynamical systems
    Bao, Feng
    Zhangb, Zezhong
    Zhangb, Guannan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 432
  • [5] A Hybrid Ensemble Transform Particle Filter for Nonlinear and Spatially Extended Dynamical Systems
    Chustagulprom, Nawinda
    Reich, Sebastian
    Reinhardt, Maria
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 592 - 608
  • [6] Parameter estimation for stiff deterministic dynamical systems via ensemble Kalman filter
    Arnold, Andrea
    Calvetti, Daniela
    Somersalo, Erkki
    INVERSE PROBLEMS, 2014, 30 (10)
  • [7] An unscented Kalman filter approach to the estimation of nonlinear dynamical systems models
    Chow, Sy-Miin
    Ferrer, Emilio
    Nesselroade, John R.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2007, 42 (02) : 283 - 321
  • [8] A Bayesian Parameter Learning Procedure for Nonlinear Dynamical Systems via the Ensemble Kalman Filter
    Rehman, Muhammad Javvad Ur
    Dass, Sarat C.
    Asirvadam, Vijanth S.
    2018 IEEE 14TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA 2018), 2018, : 161 - 166
  • [9] A Phase-space Formulation of the Belavkin-Kushner-Stratonovich Filtering Equation for Nonlinear Quantum Stochastic Systems
    Vladimirov, Igor G.
    2016 IEEE CONFERENCE ON NORBERT WIENER IN THE 21ST CENTURY (21CW), 2016, : 84 - 89
  • [10] Constrained Unscented Gaussian Sum Filter for state estimation of nonlinear dynamical systems
    Kottakki, Krishna Kumar
    Bhushan, Mani
    Bhartiya, Sharad
    COMPUTERS & CHEMICAL ENGINEERING, 2016, 91 : 352 - 364