High-Meets-Low: Construction of Strictly Almost Optimal Resilient Boolean Functions via Fragmentary Walsh Spectra

被引:12
作者
Zhang, WeiGuo [1 ,2 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Shaanxi, Peoples R China
[2] State Key Lab Cryptol, Beijing 100878, Peoples R China
基金
中国国家自然科学基金;
关键词
Boolean function; cryptography; fragmentary Walsh transform; High-Meets-Low; nonlinearity; resiliency; stream cipher; PATTERSON-WIEDEMANN FUNCTIONS; REED-MULLER CODE; COVERING RADIUS; NONLINEARITY;
D O I
10.1109/TIT.2019.2899397
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the construction of resilient Boolean functions on an odd number of variables with strictly almost optimal (SAO) nonlinearity. Through introducing the fragmentary Walsh transform, a construction technique called "High-Meets-Low" is proposed. The detailed design procedures of a 39-variable 3-resilient Boolean function with SAO nonlinearity 2(38) - 2(19) + 2(16) + 2(14) are given. It is shown that the nonlinearity of an n-variable t-resilient Boolean function can reach 2(n-1)-2((n-1)/2)+5.2((n-11)/2) or 2(n-1)-2((n-1)/2)+2((n-7)/2), which are the largest known values for the corresponding n and t values. Finally, by constructing a 29-variable balanced Boolean function with SAO nonlinearity 2(28)-2(14)+2(10) + 2(9), we show an alternative method to realize the High-Meets-Low construction technique.
引用
收藏
页码:5856 / 5864
页数:9
相关论文
共 10 条
  • [1] Construction of Odd-Variable Strictly Almost Optimal Resilient Boolean Functions with Higher Resiliency Order via Modifying High-Meets-Low Technique
    Ge, Hui
    Zhuo, Zepeng
    Du, Xiaoni
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2022, E105 (08)
  • [2] Construction of Odd-Variable Strictly Almost Optimal Resilient Boolean Functions with Higher Resiliency Order via Modifying High-Meets-Low Technique*
    Ge, Hui
    Zhuo, Zepeng
    Du, Xiaoni
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2023, E106A (01) : 73 - 77
  • [3] Construction of resilient Boolean functions in odd variables with strictly almost optimal nonlinearity
    Sun, Yujuan
    Zhang, Jiafang
    Gangopadhyay, Sugata
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (12) : 3045 - 3062
  • [4] Construction of resilient Boolean functions in odd variables with strictly almost optimal nonlinearity
    Yujuan Sun
    Jiafang Zhang
    Sugata Gangopadhyay
    Designs, Codes and Cryptography, 2019, 87 : 3045 - 3062
  • [5] Improving High-Meets-Low technique to generate odd-variable resilient Boolean functions with currently best nonlinearity
    Sun, Yujuan
    DISCRETE MATHEMATICS, 2021, 344 (02)
  • [6] Construction of almost optimal resilient Boolean functions via concatenating Maiorana-McFarland functions
    ZHANG WeiGuo & XIAO GuoZhen ISN Laboratory
    ScienceChina(InformationSciences), 2011, 54 (04) : 909 - 912
  • [7] Construction of almost optimal resilient Boolean functions via concatenating Maiorana-McFarland functions
    Zhang WeiGuo
    Xiao GuoZhen
    SCIENCE CHINA-INFORMATION SCIENCES, 2011, 54 (04) : 909 - 912
  • [8] Construction of almost optimal resilient Boolean functions via concatenating Maiorana-McFarland functions
    WeiGuo Zhang
    GuoZhen Xiao
    Science China Information Sciences, 2011, 54
  • [9] New constructions of resilient functions with strictly almost optimal nonlinearity via non-overlap spectra functions
    Wei, Yongzhuang
    Pasalic, Enes
    Zhang, Fengrong
    Wu, Wenling
    Wang, Cheng-xiang
    INFORMATION SCIENCES, 2017, 415 : 377 - 396
  • [10] Construction of Highly Nonlinear 1-Resilient Boolean Functions With Optimal Algebraic Immunity and Provably High Fast Algebraic Immunity
    Tang, Deng
    Carlet, Claude
    Tang, Xiaohu
    Zhou, Zhengchun
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (09) : 6113 - 6125