Two-dimensional dissipative gap solitons

被引:15
|
作者
Sakaguchi, Hidetsugu [1 ]
Malomed, Boris A. [2 ]
机构
[1] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Dept Appl Sci Elect & Mat, Fukuoka 8168580, Japan
[2] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 02期
关键词
diffraction gratings; Ginzburg-Landau theory; numerical analysis; optical self-focusing; optical solitons; optical vortices; optical waveguide components; variational techniques; NONLINEAR SCHRODINGER; OPTICAL LATTICES; BRAGG SOLITONS; SOLITARY WAVES; PULSES; DYNAMICS; STABILITY; EQUATION; FRONTS; LASER;
D O I
10.1103/PhysRevE.80.026606
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a model which integrates the complex Ginzburg-Landau equation in two dimensions (2Ds) with the linear-cubic-quintic combination of loss and gain terms, self-defocusing nonlinearity, and a periodic potential. In this system, stable 2D dissipative gap solitons (DGSs) are constructed, both fundamental and vortical ones. The soliton families belong to the first finite band gap of the system's linear spectrum. The solutions are obtained in a numerical form and also by means of an analytical approximation, which combines the variational description of the shape of the fundamental and vortical solitons and the balance equation for their total power. The analytical results agree with numerical findings. The model may be implemented as a laser medium in a bulk self-defocusing optical waveguide equipped with a transverse 2D grating, the predicted DGSs representing spatial solitons in this setting.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Dissipative vortex solitons in two-dimensional lattices
    Mejia-Cortes, C.
    Soto-Crespo, J. M.
    Molina, Mario I.
    Vicencio, Rodrigo A.
    PHYSICAL REVIEW A, 2010, 82 (06):
  • [2] Two-dimensional solitons and clusters in dissipative lattices
    Zhu, Weiling
    He, Yingji
    Malomed, Boris A.
    Mihalache, Dumitru
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2014, 31 (06) : A1 - A5
  • [3] Spatiotemporal dissipative solitons in two-dimensional photonic lattices
    Mihalache, Dumitru
    Mazilu, Dumitru
    Lederer, Falk
    Kivshar, Yuri S.
    PHYSICAL REVIEW E, 2008, 78 (05):
  • [4] Two-dimensional dissipative solitons supported by localized gain
    Kartashov, Yaroslav V.
    Konotop, Vladimir V.
    Vysloukh, Victor A.
    OPTICS LETTERS, 2011, 36 (01) : 82 - 84
  • [5] Stabilization of two-dimensional spatial solitons in dissipative media
    Muhsina, K. Aysha
    Subha, P. A.
    PHYSICA SCRIPTA, 2014, 89 (07)
  • [6] Observation of two-dimensional nonlocal gap solitons
    Rasmussen, Per Dalgaard
    Bennet, Francis H.
    Neshev, Dragomir N.
    Sukhorukov, Andrey A.
    Rosberg, Christian R.
    Krolikowski, Wieslaw
    Bang, Ole
    Kivshar, Yuri S.
    OPTICS LETTERS, 2009, 34 (03) : 295 - 297
  • [7] Observation of two-dimensional discrete surface solitons and surface gap solitons
    Wang, Xiaosheng
    Bezryadina, Anna
    Chen, Zhigang
    Makris, K. G.
    Christodoulides, D. N.
    Stegeman, G. I.
    2007 CONFERENCE ON LASERS & ELECTRO-OPTICS/QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2007), VOLS 1-5, 2007, : 1435 - +
  • [8] New gap solitons in two-dimensional photonic lattices
    Shi, Zuoqiang
    Yang, Jianke
    Lou, Cibo
    Chen, Zhigang
    2007 CONFERENCE ON LASERS & ELECTRO-OPTICS/QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2007), VOLS 1-5, 2007, : 2109 - +
  • [9] Quasi-one-dimensional solutions and their interaction with two-dimensional dissipative solitons
    Descalzi, Orazio
    Brand, Helmut R.
    PHYSICAL REVIEW E, 2013, 87 (02):
  • [10] Quantum fluctuations of one- and two-dimensional spatial dissipative solitons in a nonlinear interferometer: II. Two-dimensional light solitons
    L. A. Nesterov
    N. A. Veretenov
    N. N. Rosanov
    Optics and Spectroscopy, 2015, 118 : 794 - 802