Velocity of a Molecule Evaporated from a Water Nanodroplet: Maxwell-Boltzmann Statistics versus Non-Ergodic Events

被引:31
作者
Abdoul-Carime, Hassan [1 ,2 ,3 ]
Berthias, Francis [1 ,2 ,3 ]
Feketeova, Linda [1 ,2 ,3 ]
Marciante, Mathieu [1 ,2 ,4 ]
Calvo, Florent [5 ]
Forquet, Valerian [1 ,2 ,6 ]
Chermette, Henry [1 ,2 ,6 ]
Farizon, Bernadette [1 ,2 ,3 ]
Farizon, Michel [1 ,2 ,3 ]
Maerk, Tilmann D. [7 ]
机构
[1] Univ Lyon, F-69003 Lyon, France
[2] Univ Lyon 1, F-69622 Villeurbanne, France
[3] CNRS IN2P3, UMR 5822, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France
[4] CNRS, Inst Lumiere Mat, F-69622 Villeurbanne, France
[5] Univ Grenoble 1, CNRS, LIPhy UMR 5588, F-38041 Grenoble, France
[6] CNRS UMR 5280, Inst Sci Analyt, F-69622 Villeurbanne, France
[7] Leopold Franzens Univ, Inst Ionenphys & Angew Phys, A-6020 Innsbruck, Austria
关键词
energy transfer; mass spectrometry; molecular dynamics; velocity map imaging; water; COLLISION-INDUCED DISSOCIATION; ENERGY-TRANSFER; BOND; CLUSTERS; PROTON; SPECTROSCOPY; EXCITATION; SCALE; MODEL;
D O I
10.1002/anie.201505890
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The velocity of a molecule evaporated from a mass-selected protonated water nanodroplet is measured by velocity map imaging in combination with a recently developed mass spectrometry technique. The measured velocity distributions allow probing statistical energy redistribution in ultimately small water nanodroplets after ultrafast electronic excitation. As the droplet size increases, the velocity distribution rapidly approaches the behavior expected for macroscopic droplets. However, a distinct high-velocity contribution provides evidence of molecular evaporation before complete energy redistribution, corresponding to non-ergodic events.
引用
收藏
页码:14685 / 14689
页数:5
相关论文
共 37 条
[1]  
[Anonymous], ANGEW CHEM INT ED
[2]  
[Anonymous], 2001, ANGEW CHEM, DOI DOI 10.1002/1521-3757(20010518)113:10<1856::AID-ANGE1856>3.0.CO
[3]  
2-5
[4]   Water: Water - an enduring mystery [J].
Ball, Philip .
NATURE, 2008, 452 (7185) :291-292
[5]   Competing atmospheric reactions of CH2OO with SO2 and water vapour [J].
Berndt, Torsten ;
Voigtlaender, Jens ;
Stratmann, Frank ;
Junninen, Heikki ;
Mauldin, Roy L., III ;
Sipila, Mikko ;
Kulmala, Markku ;
Herrmann, Hartmut .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (36) :19130-19136
[6]   Collision-induced dissociation of protonated water clusters [J].
Berthias, F. ;
Buridon, V. ;
Abdoul-Carime, H. ;
Farizon, B. ;
Farizon, M. ;
Dinh, P. M. ;
Reinhard, P. -G. ;
Suraud, E. ;
Maerk, T. D. .
PHYSICAL REVIEW A, 2014, 89 (06)
[7]   A polarizable multistate empirical valence bond model for proton transport in aqueous solution [J].
Brancato, G ;
Tuckerman, ME .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (22)
[8]   A new experimental setup designed for the investigation of irradiation of nanosystems in the gas phase: A high intensity mass-and-energy selected cluster beam [J].
Bruny, G. ;
Eden, S. ;
Feil, S. ;
Fillol, R. ;
El Farkh, K. ;
Harb, M. M. ;
Teyssier, C. ;
Ouaskit, S. ;
Abdoul-Carime, H. ;
Farizon, B. ;
Farizon, M. ;
Maerk, T. D. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (01)
[9]   Binding energies determined from kinetic energy release measurements following the evaporation of single molecules from the molecular clusters H+(H2O)n, H+(NH3)n and H+(CH3OH)n [J].
Bruzzie, E. ;
Parajuli, R. ;
Stace, A. J. .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2013, 333 :1-7
[10]   Water effects on atmospheric reactions [J].
Buszek, Robert J. ;
Francisco, Joseph S. ;
Anglada, Josep M. .
INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 2011, 30 (03) :335-369